
In this paper we provide a quantitative framework for best-
effort protection of the optical layer.  This framework allows to
bridge the gap between two known protection grades of fully
protected connections vis-a-vis unprotected protection.  The
framework allows to specify the probability with which the
connection will be protected, providing the customer with a full
range of protection guarantees at possibly different prices.
Since connections may be partially protected, the required
protection bandwidth can be reduced.  The amount of protection
bandwidth is shown to depend on an “equivalent  survivable
bandwidth.” The framework also extends to preemptable (low
priority) connections and to different ring architectures.

A. INTRODUCTION

Optical networks are emerging as the predominant
transport layer technology for telecom service providers,
replacing SONET/SDH in this role. As such, they are
evolving from first-generation point-to-point systems that
focused on efficient multiplexing using wavelength
division multiplexing, to second-generation systems that
provide more networking functions. In particular, fault-
tolerance has been one of the main highlights of the
SONET/SDH layer, and is now being added to optical
layer equipment from optical add-drop multiplexers
(OADMs) to optical cross-connects (OXCs).

The following protection classes1 have been considered
for ATM networks [VHS96] and later for the optical
layer [GR00a]. In similarity to the concept of QoS they
have been termed “Reliability of Service (RoS)” classes
in [VHS96]:

(a) Guaranteed protection: the connection will be
protected by the transport layer with very high likelihood
(99.999% is typical),

(b) Best effort protection: using less protection
bandwidth

(c) Unprotected traffic: the transport layer does not make
an effort to protect the connection if a failure occurs, and

(d) Preemptable traffic: traffic that normally uses
protection bandwidth for classes (a) and (b), and is
preempted when the protection bandwidth is needed to
                                                  
1 We term these fixed protection alternatives “protection

classes”, while the continuous set of protection levels we
propose below we term “protection grades” to make a
distinction between the two approaches. (Thus a given
range of protection grades may be mapped to a single
protection class.

protect against a failure. This class is termed “extra
traffic” in SONET nomenclature.

While classes (a), (c) and (d) are well defined, and their
implementation has been widely studied, e.g., in  [RM99,
GR00b], the grade of service for the best effort class (b)
has never been quantified before. The only work that
alludes to the need for a differentiated service model for
the optical layer, and also addresses different grades of
protection is [GNS00], but even it does not define what
does, say, 40% protection really mean. Likewise,
different service grades are also possible from class (d),
but have not been addressed before systematically.

In this work we propose a unified paradigm that places
all the above service classes on a continuous spectrum of
protection grades (where different sub-ranges of grades
map to a single protection class). This paradigm is based
on assigning a guaranteed quality of protection (or QoP)
to each connection. Upon a failure, the probability of a
connection to survive the failure is determined by its QoP.

It should be noted that it is straightforward to assign
different priorities to different connections and restore
them based on their relative priority, but that this
approach only provides a relative guarantee, which is
insufficient if the service is priced and sold to a customer
according to its grade. By contrast, our approach is based
on an absolute guarantee and therefore provides a better
option for a service level agreement (SLA).

Note that probabilistic guarantees addresses a weakness
of relative priorities.  Relative priorities do not address
how best effort protection connections can be restored in
a fair way.  Higher priority connections always will be
restored over lower priorities.  If best effort protection
connections were priced about the same then we would
expect them to have the same chance of surviving.  Then
we should resort to something like probabilistic
guarantees.

While the scheme is especially attractive for optical
networks, given their emerging role as the protection
layer of the transport network, it is equally viable for any
connection-oriented network, such as MPLS or ATM.

We should also note that there is related work in [MS00].
The work focuses on D-connections, which are protected
connections, but where the protection bandwidth can be
used by working paths.  Thus, D-connections are allowed
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to become unprotected.  Efficient routing algorithms and
connection admission algorithms are given and simulated.
However, the work does not provide a unified paradigm
for protection covering the four classes of protection
(guaranteed, best effort, unprotected, and preemtable) as
we do in this paper.  In addition, they do not have the
same probabilistic guarantees that we introduce here.

In Section B, we provide motivation for our QoP
paradigm. In Section C, we introduce the QoP framework
using a simple two node network example.  In addition, a
measure for the amount of protection bandwidth required
is given that is similar in concept to equivalent
bandwidth for ATM networks, that is used to estimate
how bandwidth is shared.  Insights on how the protection
may be implemented using probabilistic algorithms are
discussed.  An alternative to probabilistic protection is
given in Section D referred to as the deterministic
framework. This scheme is more appropriete for digital
crossconnects whereas the probabilistic approach applies
to all-optical cross-connects as well.

Some of the concepts in Section C are extended to ring
networks in Section E. Ring topologies are important to
optical networks since SONET/SDH are ring oriented.
They are the prevalent topology deployed in existing
transport networks.  This section also provides insights
into how to optimally route connections in the presence of
mixed grades of protection. In particular, we have
extensions for all survivable traffic excluding
preemptable connections.  However, under certain special
cases, we can include preemptable connections and this is
discussed in Section F, which is on extensions and related
models.

In Section F, we also have a brief discussion of these
results to mesh networks.  Much future work must be
done for mesh networks.  However, the purpose of this
paper is to introduce the QoP framework, which we
believe may be the first unified paradigm to cover all four
classes of protection in a seamless way.

Finally, a summary is given in Section G, including the
many open problems that this paper instigates.

B. MOTIVATION

At present, SONET/SDH ring networks waste at least
50% of their bandwidth on protecting traffic. Since the
protection is 100% guaranteed, the same amount of
bandwidth that is allocated for working traffic along one
side of the ring has to be reserved on the opposite side for
protection. This waste is becoming unacceptable for

many carriers, which is one of the main motivations for
moving away from simple ring based protection, into
more complex – yet more efficient – mesh protection
schemes. Mesh protection reduces the amount of reserved
protection bandwidth by sharing the same bandwidth
among different working connections, as long as they are
not likely to fail together. Thus, if connections A and B
do not share any links and nodes along their working
routes, they are highly unlikely to fail at the same time
and can therefore share the same protection route.

Yet, even mesh protection schemes require considerable
bandwidth on their protection path [IMG98, RM99]
Furthermore, this waste grows as the network topology
becomes sparser, as larger subnetworks resemble rings
more and more. For example, if the mesh network is
really a ring, then the same 50% protection bandwidth
that SONET shared protection rings (e.g., SONET
BLSR) need, is also required by mesh protection
schemes.

Due to the cost structure of WDM, it is expected that the
physical network topology will become sparser to take
advantage of the relatively low cost of activating another
channel on existing WDM links vis-à-vis installing a new
link from scratch. This is due to the high upfront cost of
optical (EDFA) amplifiers – especially for long-haul
application, where many of them are needed along each
link – and negligible added cost for turning up another
channel once they are in place [S00].  This phenomenon
has also been observed for non-WDM cost structures
[DG00].

We shall see that our best-effort QoP framework allows
to reduce the reserved bandwidth, even for rings, well
below the mandatory 50% protection bandwidth and that
the saving is proportional to the grade of protection
required by the customers of the optical layer.

Another motivation for having a continuous range of
protection grades (from the 100% protection traffic to the
0% protection, that unprotected traffic provides) is the
fact that Internet traffic is often more sensitive to cost
than to reliability. Furthermore, from real-life data
obtained from a regional ISP during 1998, it is evident
that most of the failures are at the IP layer and cannot be
fixed by the optical layer [LAJ98]. This raises the
following issue: why does the optical layer have to
guarantee 99.999% service protection while the rest of
the network components are quite far from this level of
reliability? Our QoP scheme allows customers to gauge
the grade of protection they are getting from the optical
layer to the level of reliability that the rest of their
network supports, while keeping the costs down.



Lastly, one can use low survivability lightpaths to
construct a high-survivability network, as shown in the
following example in Figure 1.  In this figure, a 5 node
full mesh IP network is depicted, whereby each link
between routers uses an optical network lightpath. The
probability of each lightpath to fail is high (0.1), but yet
in order for the network to get disconnected at least 4
links have to fail, the likelihood of which is very low

( 0001.01.0 4 =  assuming the different lightpaths are
independent).

Figure 1: An IP network over an optical cloud

In the next section, we focus on a two node system, with
one working fiber and one protection fiber. On this
network we define our protection framework, starting
with protected connections, and then preemptable
connections.

C. THE QUALITY OF PROTECTION FRAMEWORK: THE

TWO NODE CASE

We shall start with a few definitions.  To illustrate these
definitions, we refer to a two node network with two
diverse parallel links L1 and L2 shown in Figure 2.  We
will first discuss a framework for protected, best-effort,
and unprotected connections (lightpaths) only.   Then we
discuss preemptable connections.

Figure 2: A two node network

For each connection C we associate a QoP grade
10 ≤≤ Q(C) . If any link L along the working path of C

fails, the probability that service will be immediately
restored is Q(C). Note that these concepts are consistent
with how the known protected and unprotected services
behave: Q(C) = 0 means that the connection C will not
recover if a failure occurs (i.e., unprotected), and
Q(C)=1 means that C will recover (i.e., guaranteed
protection). Any value between those two extremes is
considered best-effort protection.

Assuming the connection C requires a bandwidth B(C),
define the equivalent survivable bandwidth (ESB) of the
connection to be: B(C)Q(C)ESB(C) ⋅= . Note that this

concept is similar to the concept of equivalent bandwidth
for ATM networks in that it is used to estimate how
bandwidth can be shared. In the rest of this paper we
assume B(C) = 1 for all connections C. Not only does
this simplify the exposition, but also it is applicable to
optical networks, were most connections typically run at
a given fixed bandwidth (e.g., OC-48 or OC-192).

Also define the working load on a link L, WL(L) to be the
number of working connections that use the link and its
equivalent survivable load,

      




 ∑=
Llink    uses  C  Connection
)(CESBESL(L) ,

to be the equivalent survivable bandwidth of all the
connections that use the link L.

Theorem 1.  Consider the two node network of Figure 2.
ESL(L1) is the necessary and sufficient amount of
bandwidth on L2 required to ensure that each
connection C with a working path on L1 is protected
with probability Q(C ) .

Proof.   We first show that ESL(L) is necessary.  Recall
that each connect C should have a probability Q(C) of
recovering in case of a fault on L1. Then by definition

∑
L1link   uses  C  Connection

)(CESB    is the average protection bandwidth

used in Link L2 in case of a fault on L1 .  Thus, the sum
is a lower bound on the amount of protection bandwidth
needed.  Since bandwidth amounts are integer, ESL(L1) is
also a lower bound.

To show sufficiency we will describe a scheme to
randomly select a collection of connections that are
protected in case of an L1 fault.   We denote by C1, C2,...,
Cm  the connections with working paths in L1, where m is
the number of such connections.  We let a binary m-
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vector b = (b1, b2,...,bm) represent a collection of
connections that are protected in case of a fault, where bk

= 1 if Ck is protected, and 0 otherwise.  Note that for a
binary m-vector b to be a proper representation, it must
have at most ESL(L1) ones.  By Lemma A in the
Appendix, we can find, for some n, a set of binary m-
vectors b(1), b(2),..., b(n) and a probabily vector (f(1),
f(2),...., f(n)) with the following properties:  (1)  each b(k)
is a binary m-vector with at most ESL(L1) ones, and  (2)
for each connection Ci,

∑=
k

kfkibiCQ )( )()(

The protection scheme is as follows.  Whenever L1 incurs
a fault, with probability f(k) the connections
corresponding to b(k) are protected through L2.  Notice
that from property (1) only ESL(L1) bandwidth is
required for the protection.  Also notice that from
property (2) a connection Ci will be protected with
probability Q(Ci).

Q.E.D.

So far we have provided a framework to unify guaranteed
protected connections, best effort connections and
unprotected connections (protection grades (a)-(c) above).
We refer to these connections as survivable connections
since they should survive as long as their is no failure on
their working paths.

We now extend the scheme to also support preemptable
connections. Preemptable connections normally populate
the protection bandwidth used to recover other survivable
connections and are preempted when another connection
requires the bandwidth. However, one should note that
the order in which this traffic is preempted is unspecified.
Therefore, it is possible to define a “prioritization order”
which will define which of the preemptable connections is
preempted first and which one is the most reliable of the
preemptable connections, and will be the last to be
disrupted.

For the sake of simplicity, we focus first on the two node
network of Figure 2 and assume that fiber L1 (resp. L2)
carries B1 (resp. B2) channels. Suppose L1 carries
protected traffic only, and L2 carries preemptable
connections and free bandwidth to accommodate a failure
on L1. Now suppose L1 has failed.  If

)1()2(2 LESLLWLB +≥  then, by Theorem 1, the

survivable connections on L1 will be protected on L2.
However we are now interested in the case where

)1()2(2 LESLLWLB +< .  In this case, some of the

connections in L2 must be preempted to make way for
survivable connections on L1.  Lets us first consider a

straightforward extension of the best-effort model and see
where the approach fails. Then we shall explain a better
approach that does not suffer from these shortcomings.

1) The naive approach

There is no clear distinction between best-effort and
preemptable traffic and the definitions from before are
still valid. Each connection has its Q(C), and in addition
the maximum total number of channels B2 is given, such
that L2 cannot protect all connections. As a result, both
the disrupted survivable connections on link L1 (in need
for protection) and the preemptable connections on L2
contend for the same B2 channels. Those connections on
L2 with a lower QoP grade Q(C) than that of the
disrupted connections on L1 will be preempted and thus
can be considered preemptable connections.

While this approach does provide a uniform framework
for all protection classes, it has several shortcomings:

There is no fixed mapping between the QoP Q(C) and the
protection class: a connection on link L2 can be non-
preempted (i.e., survivable) or preempted depending on
the protection grades  for other connections. Thus its
class dynamically changes depending on its relative order
amongst the connections on links L1 and L2.

An even more important issue concerns the definition of
Q(C): while it is well defined for the surviving
connections, it provides no probabilistic guarantee for the
preempted connections. In other words, Q(C) becomes
just a relative priority among the connections and not a
(more tangible) protection guarantee.

For these reasons we turn to the following less intuitive
approach which avoids these shortcomings.

2) The improved approach

We extend the range of QoP grades Q(C) to be
11 ≤≤− Q(C)  to map as follows to the different

protection classes:

Protection Service Protection Grade

(a) guaranteed Q(C) = 1

(b) best effort 0 < Q(C) < 1

(c) unprotected Q(C) = 0

(d) preemptable −1 < Q(C) < 0

(e) unused channel Q(C) = −1

Thus, 0)( ≥CQ means that the connection is survivable,

while Q(C)<0 means that the connection is preemptable.
The QoP grade Q(C) is mapped into protection
guarantees as follows:



The probability that a connection C will survive a failure
on its working path is at least SP(C), which is defined to
be }0),({)( CQMaxCSP = .  SP(C) will be referred to

as the survivability probability.  Note that if SP(C) > 0
then the connection is a survivable connection.

The probability that a connection C will be preempted
when there is a fault that is not on its working path is at
most PP(C), which is defined to be

}0),({)( CQMaxCPP −= .  PP(C) will be referred to as

the preemptable probability.  Note that if PP(C) > 0 then
the connection is a preemptable connection.

We say that a a QoP grade Q(C) for a connection C is
valid if  it survives according to SP(C) and is preempted
according to PP(C) when a fault occurs.

Next, we define the equivalent preemptable bandwidth
(EPB) to be: )()()( CBCPPCEPB ⋅= .   (Again, we

make the assumption that B(C) = 1.)  This is analagous
to the equivalent survivable load for survivable
connections defined earlier.  We also define the
equivalent preemptable load (EPL) to be

      







∑=

L
)(

link  uses C Connection

CEPBEPL(L) .

 The next theorem extends Theorem 1 to make use of
preemptable connections for the protection of survivable
connections.

 Theorem 2.  Consider the two node network of Figure 2
and a failure on L1  A sufficient condition to insure that
the QoP grades for each connection is valid for the
failure is

                     )2()1( LEPLLESL ≤

Proof.   From Theorem 1, we know that there is a scheme
to such that ESL(L1) bandwidth on L2 can protect
survivable connections on L1 according to their QoP
grades.  Let us refer to this as scheme 1.  Using similar
arguments in the proof of Theorem 2, we can define a
scheme, referred to as scheme 2, such that if EPL(L2)
bandwidth is preempted on L2 then each preemptable
connection C on L2 is preempted with probability PP(C).
These two schemes can be combined to imply the
theorem.  In particular, upon a failure of link L1, the
following algorithm is used:  EPL(L2) preemptable
connections on L2 are preempted according to the scheme
2.   This frees at least )2()1( LEPLLESL ≤ bandwidth.

on L2.  ESL(L1) survivable connections on L1 are chosen
bo be protected on L2 according to scheme 1.

Q.E.D.

D. A DETERMINISTIC QOP FRAMEWORK

In the above probabilistic scheme, survivable connections
share protection bandwidth by using randomization. This
is the only bandwidth sharing possible for a transparent
truly optical network that carries different signal formats
and is not even aware of their exact bit rates, since either
a connection is completely recovered or not recovered at
all.

Other optical networks (termed opaque networks) do
have access to the carried formats, and can even
multiplex/demultiplex them onto a single wavelength
using time division multiplexing (TDM) techniques.
Several electro-optical crossconnect vendors are boasting
this capability (typically SONET OC-192 and OC-48
signals are broken into their consituent STS-1 level
signals and are crossconnected at this level before being
multiplexed back into OC-n signals).

This allows for a deterministic QoP model, whereby upon
a failure, each survivable connection is guaranteed to
have a deterministic reduced protection bandwidth

B(C)SP(C)RPB(C) ⋅= . Note that here SP(C) is no

longer the probability of protection the connection, but
the reduced bandwidth available for the connection,
assuming the protection connections are electrically
multiplexed together.   However, also note that RPB(C) is
exactly equal to ESL(C).

Likewise, upon a failure, each preemptable connection is
guaranteed to have at most a reducted working
bandwidth B(C)PP(C)RWB(C) ⋅= .  Here, PP(C) is

no longer the probability of preempting a connection, but
the reduction of working bandwidth for the connection if
a failure occurs.  Note that RWB(C) is exactly equal to
EPL(C).

To illustrate these concepts we give an example of both
the probabilistic and deterministic QoP frameworks.

Example.  Consider the two node network in Figure 1.
We have the following connections on L1: C1 with
Q=0.5, C2 with Q=0.5, C3 with Q=0.25, and C4 with
Q=0.25. On L2 the following connections exist: C5 with
Q= −0.5 and C6 with Q= −0.5.

We also assume that there is a single unused channel on
L2.  Thus, the number channels on L1 is B1 = 4  (C1 +
C2 + C3 + C4), and the number of channels on L2 is B2
= 3 (C5 + C6 + unused).  Notice that C1, C2, C3, and
C4 are survivable connections on L1, and C5, C6, and
the unused channel are preemptable connections on L2.
Also notice that ESL(L1) = 2 and EPL(L2) = 2.



The following is an example of how a probabilistic
protection service may be implemented.  Upon a failure
on L1, with probability 0.5, {C1, C3} are protected and
C5 is preempted; and with probability 0.5, {C2, C4} are
protected and C6 is preempted.  In both instances, two
connections on L1 are protected are protected through L2
by using a preempted connection and the free channel.
Also notice that C3 and C4 are given better protection
(higher protection probabilities) than their prescribed
QoP grades.

The next example is one of a deterministic protection
service.  Upon a failure on L1, both C5 and C6 reduce
their bandwidth to 0.5.  This increases the free bandwidth
on L2 to 2.  Then C1 and C2 each send 0.5 bandwidth on
the freed up bandwidth.  C3 and C4 each send 0.25
bandwidth each on link L2 on the unused channel.  (Note
that in this case, we could also have C3 and C4 restore
more bandwidth than their prescribed QoP grade.)

The rest of the paper will focus on the probabilistic
protection. It should be noted, however, that all the
results for the probabilistic protection below can be
translated to the deterministic protection. The reverse is
not true, and some results are true only for the
deterministic model. These cases are explicitly marked as
such.

E. RING NETWORKS

SONET/SDH ring networks play a central role in the
current telecommunications infrastructure, and have been
widely considered for the optical layer as well. In this
section we extend the definitions and results from the two
node network to a general ring.  We will simplify the
discussion by focusing on survivable connections (i.e.,

0)( ≥CQ ) and ignoring preemptable ones.  We have

some results for preemptable connections and these are
left in Section F.  Even without preemptable connections,
the results are nontrivial.  For example, the type of
protection on the ring (line or path protection) has
bearings on the efficiency to the protection and the
amount of bandwidth needed per link, which was not the
case for the two node ring.

In the rest of this section we focus on how to realize the
QoP grade assuming only survivable connections. We
also assume that the ring has the same number of
channels Bmax per link.  We consider three typical
protection schemes in a ring network:

Optical layer
terminology (ITU)2

Sharing Protected entity

OMS-SPRing Shared Line

OCh-DPRing Dedicated Path

OCh-SPRing Shared Path

These networks are graphically depicted in Figure 3,
Figure 6, and Figure 7.

Figure 3: Line protection

E.1. Line Protection in Ring Networks

Line protection is based on switching all the connections
that use a failed link together, around the ring. This
approach has been proposed for the optical layer and has
been termed “OMS-SPRing” by the standard bodies. It
allows for substantial equipment saving if implemented
optically [GR00b].

An example for the behavior of the scheme can be found
in ks are graphically depicted in Figure 3, Figure 6, and
Figure 7.

Figure 3, where a 5 node ring is depicted supporting 3
connections (A, B and C). Upon a failure of a link, the
affected connections (A and B) are looped back at the
nodes adjacent to the failure using dedicated protection
bandwidth, while connection C remains intact.  Notice
that the protection path of A takes a long route that goes
to the failed link rather than take a direct route.  This type
of inefficient routing is sometimes referred to as
“backhauling”.

With guaranteed connections, it is obvious that one needs
to reserve half of the bandwidth around the ring for

                                                  
2 Similar terminology has been used by ITU for SDH networks

as well. Optical multiplex section (or OMS) refers to the line
layer, whereas Optical channel (OCh) refers to the path
layer. SPRing stands for Shared Protection Ring and
DPRing for Dedicated Rrotection Ring.

(a) before a failure (b) after a failure 
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protection purposes, since if 2 links support more than
50% working connections, the failure of one of them will
imply that the other link does not have enough bandwidth
to protect the failed connections. With our QoP scheme,
the amount of protection bandwidth needed to protect
against a failure of link L is only ESL(L) – as proven in
the following theorem.

 Lemma 3. For each link L in the ring, ESL(L) is the
amount of bandwidth required on each of the other links
to ensure that each connection C on link L is protected
with probability SP(C) if  L fails.

Proof.  Consider the survivable connections using link L.
We can use the scheme in the proof of Theorem 1 to
randomly choose ESL(L) of them to be protected in case
L fails so that each connection C is protected with
probability at least SP(C). Thus, ESL(L) bandwidth on

the other links is sufficient bandwidth to protect the
randomly chosen connections.

Q.E.D.

Let us now calculate the capacity (number of channels)
needed for a link L, B(L). The number of working
channels per link is WL(L), and the number of protection
channels needed on link L to protect against a failure of
any other link L’ is )'(max

 
LESL

LL' ≠
. Thus,

)'('max       LESLLL WL(L) B(L) ≠+= .

Note that some connections C contribute twice to some
links: once as a working channel (1 unit of traffic) and
again as a protection path, but then only contributing
ESB(C).   For example, in Figure 3, connection A
contributes 1 unit of traffic to link L1 and upon the fault,
it also contributes an additional ESB(L) as its protection
path backhauls through L1 again.

The amount of bandwidth required is









≠
+== )'(max)(max   max LESLLWL

L
B(L)

L
Bmax

LL'

We have a simpler upper bound for Bmax,

Bmax* = )(max   max LESL
L

WL(L)
L

+

Note that Bmax = Bmax* if there is more than one link L
that maximizes )(max LESL

LL'≠
.  Since in that case,  for

all links L, )(max)(max LESL
L'

LESL =
≠LL'

.

Lemma 3 implies the following theorem.

 Theorem 4.  Consider a ring network that is supporting
survivable connections only.  Suppose the survivable
connections have been routed.  A sufficient amount of
bandwidth to provide protection according to the QoP
grades is Bmax per link.

Next we consider the problem of routing connections to
minimize Bmax.  This seems to be a difficult problem, so
one may consider minimizing the simpler Bmax* instead.
The next theorem addresses this optimization problem
assuming all connections have the same EPB(C).   The
theorem uses the following definition:

)(max LWL
L

maxWL =

 Theorem 5. Consider a ring network with only
survivable connections that are not routed yet.  Suppose
EPB(C)=Q for all connections C. The problem of
routing the connections to minimize Bmax* is equivalent
to the problem of minimizing Lmax.

Outline of Proof. Note that Bmax* is composed of two
terms:  Lmax and )(max LESL

L
. Note that a routing that

minimizes Lmax will minimize the maximum number of
connections through any link.  This is precisely the
routing that will minimize )(max LESL

L
 since all the

QoP grades are the same.  Since a routing that minimizes
Lmax will also minimize the two terms of Bmax*, it must
also minimize Bmax*.

Q.E.D.

This problem has been studied extensively in the context
of circuit-switching and optimal solutions for it exist in
ring networks [FNSST92, VSKW96].

When EPB(C) is different for different links, this
equivalence does not hold, as shown by the following
theorem. In addition, the theorem considers the maximum
weighted load Wmax, where the weight for connection C
is 1+Q(C), which may (wrongly) seem as an
approximation of Bmax*.

Theorem 6. Given a ring and a set of connection
endpoints, with Q=0 or Q=1. The following three design
problems have conflicting optimization goals:

a) Find a routing that minimizes the maximum load
Lmax on any link,

b) Find a routing that minimizes the maximum
weighted load Wmax on any link, and



c) Find a routing that minimizes the maximum
capacity Bmax* on any link.

Proof. Consider two examples, one demonstrating that
any configuration that minimizes Lmax on a given
network does not minimize Wmax or Bmax* in the
network. The other example shows that minimizing
Wmax does not minimize Bmax*.

First, consider the example in Figure 4, in which a 4 node
ring is depicted and 13 connections, out of which 4 have
Q=1 (depicted in bold) and 9 have Q=0.

Figure 4: Lmax is not mutually achievable with Bmax*
and Wmax

In part (a), the load is minimized (Lmax = 4). If any of
the connections is rerouted around the ring, the load is
increased to 5. However, to minimize Bmax* and Wmax,
such a rerouting is needed as shown in part (b) of the
figure. One can exhaustively check that no other
configuration optimizes both Lmax and Bmax*, or both
Lmax and Wmax.

Figure 5: Bmax* is not mutually achievable with Wmax

Now consider the example in Figure 5, in which 11
connections exist, 4 of which have Q=1and the rest have
Q=0. In this example part(a) optimizes Bmax* while part
(b) optimizes Wmax. One can exhaustively check that no
other configuration optimizes both metrices.

Q.E.D.

Observation. Note that in the above examples Q=0 or
Q=1. Thus they pertain to the known problem of mixing
fully protected and unprotected traffic. It is interesting
to note that the bandwidth optimization problem in this
simple case(Bmax*) is still different from the Lmax
solution with is used for fully protected SONET BLSR
rings.

E.2. Dedicated Path Protection in Ring Networks

Dedicated path protection has been widely deployed in
SONET networks, where it is termed “unidirectional path
switched ring” (or UPSR for short). The main advantage
of this scheme is its simplicity, steming from the fact that
no coordination is needed between the endpoints of a
connection in order to switch to a protect path.  Each
node transmits two copies of the data in both clockwise
and counterclockwise directions and it is totally up to the
receiving node to decide which copy to choose.

Figure 6: Dedicated path protection

Under the QoP paradigm, deterministic protection makes
more sense than probabilistic protection.  With
determistic protection, a survivable connection C will
have a protection path that is running in parallel with the
working path though at a lower data rate ESL(C).  With
probabilistic protection, some survivable connections will
have no protection paths.

With deterministic protection, the data flows of a
survivable C must have its bit rate reduced to fit into the
protection path.  Packets (or tributary flows) within a
connections data flow must be dropped, perhaps at
random or by priorities, if such priorities exist.  This
protection scheme relies on flow control at higher layer
protocols.  Then a connection’s data flow will be reduced
to fit into the protection path.

(a) before a failure (b) after a failure 
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(a) optimal Lmax:
Lmax=4, Bmax*=8
Wmax=8

(b) optimal Bmax* & Wmax:
Lmax=5, Bmax*=7
Wmax=7

 

(a) Optimal Bmax*: 
Bmax*=5, Wmax=5 

(b) Optimal Wmax: 
Bmax*=6, Wmax=4 



Notice that each connection C contributes a bandwidth of
1 along its working path and a bandwidth of EPB(C)
along its protection path.  This is equivalent to saying
that C contributes a bandwidth EPB(C) along every link
in the ring, and an addition, 1-EPB(C) along the working
path. Therefore we can ignore the former contribution for
all connections, and focus the optimization problem on
the latter contribution, arriving at the following
optimization problem.

 Equivalent optimization problem. Given a set of
connections on a ring network, find a routing for them
that minimizes the maximum “weighted load”(Wmax)
over all  links, where each connection C contributes 1-
EPB(C) to the load of each link along its route.

While this problem is known to be NP-Complete [CS94],
good heuristics to it are known (e.g., [VSKW96]).

E.3. Shared Path Protection in Ring Networks

Shared path protection is based on switching each of the
failed connections individually, along the shortest
alternate route around the ring, as shown in Figure 7.
Thus the “back hauling” effect for line protection is
avoided.  For example, in Figure 3 the working path of
connection A for line protection is longer than the
working path of the same connection using shared path
protection in Figure 7. Consequently, the amount of
protection bandwidth needed along the different links is
different.

We proceed to compute the amount of protection
bandwidth required for survivable connections.  Let us
determine the amount of bandwidth B(L) required for a
link L.  B(L) should include WL(L).  It should also have
protection bandwidth when other links fail.  The amount
of protection bandwidth required if link L’ fails is

∑
 L not but L' traverses C

CESB )(

Thus, the amount of protection bandwidth required for
link L is

∑≠ L not but L' traverses C
CESB

L L'
)(max

= ∑
L not but L' traverses C

CESB
L'

)(max

Let the last maximum be denoted by PathPB(L) (i.e.,
path protection bandwidth at link L).  Notice that the
summation in PathPB(L) is a “weighted load” of all the
connections through a link L’ excluding connections
through link L, where the “weight” of a connection C is

the equivalent survivable bandwidth ESB(C).  Thus,
PathPB(L) is the maximum weighted load over all links
excluding the connections that go through L.

Figure 7: Shared path protection

Thus, the amount of bandwidth required on link L is
WL(L) + PathPB(L).  This implies the following
theorem.

 Theorem 7.  Consider a ring network that is supporting
survivable connections only.  Suppose the connections
have been routed.  A necessary amount of bandwidth to
provide shared path protection according to the QoP
grades is Bmax = ( ))()(max LPathPBLWL

L
+

It is straightforward to prove that this condition is also a
sufficient condition in the deterministic case.

 Theorem 8.  Under the conditions of Theorem 7, Bmax
is sufficient to realaize the QoP for a set of survivable
connections in the deterministic model.

The implementation of a probabilistic scheme to realize
the QoP grade of service with only Bmax bandwidth per
link is for future study.

An interesting question is whether shared path protection
provides any gain over the simpler shared line protection.
The following example shows that in a ring with 3
connections, line protection may require 6 units of
bandwith in the worst case, whereas path protection only
requires 3 units.

(a) before a failure (b) after a failure 
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Figure 8: Path versus line protection

F. EXTENSIONS AND RELATED MODELS

F.1.  Preemptable Connection in Rings

So far, our results for ring networks do not include
preemptable connections.  We have the following theorem
when preemptable connections are included if their QoP
grades Q(C) are the same value.

Theorem 9.  Consider a line protection ring network.
Suppose there is a value q > 0, such that each
preemptable connection C has QoP grade Q(C) = − q.
Then a sufficient condition to insure that the QoP
grades are valid for each connection is for all pairs of
links L and L’: )'()( LEPLLESL ≤ .

Outline of Proof.  Consider a link L.  Now consider all
preemptable connections.  We can partition these
connections into “strings”, where a string is a sequence of
preemptable connections starting from one end of L and
ending at the other end of L.  The sequence is such that
the end of one connection is the beginning of another.
These strings can be created in a “greedy” way by
starting at one end of L and following connections around
the ring until the other end of L is reached.  During the
traversal of the ring, whenever a connection of a string
terminates, a new connection is added to the string.  Such
a greedy method will result in ESL(L)/q strings since on
each link L’ there are EPL(L’)/q ≥  ESL(L)/q
preemptable connections.  Note that if we preempt each
string with probability q whenever there is a fault on L,
then the QoP grade will be valid.

Now we have survivable connections on L with
equivalent survivable load ESL(L).  We also have
ESL(L)/q strings on the rest of the ring, each will be

interrupted with probability q.  This is basically the same
situation as the two node network, where our L is the L1
in the two node network, and the rest of the ring is L2 in
the two node network.  Theorem 8 then follows from
Theorem 2.

Q.E.D.

F.2.  Mesh Networks

We will discuss at least one difficulty in dealing with
mesh networks.  One of the advantages of our QoP
paradigm is that it has a simple notion of equivalent
survivable bandwidth.  This bandwidth turns out to be an
efficient amount of  protection bandwidth for the two
node network and ring with line protection.  However, for
mesh networks, the equivalent protection bandwidth may
provide a necessary bandwidth requirement that is much
smaller than what is sufficient.  This is true for the
probabilistic protection scheme as illustrated by the
following example.

Example.  Consider three survivable connections C1, C2,
and C3 in Figure 8. Their QoP grades are 0.5.  Their
working paths are shown as solid lines and their
protection paths are dotted lines.  Notice that their
working paths meet pair-wise at links L1, L2, and L3,
and all their protection paths meet at L4.  Note that any
link fault at L1, L2, and L3 leads to an equivalent
survivable bandwidth of 0.5 + 0.5 = 1 at link L4.  This
implies that only one channel is needed at L4 to protect
C1, C2, and C3.  Yet, only one of the three can be
recovered if there is only a single protection channel at
L4, since the recovery of each one of the channels will
prohibit the other two from being recovered.  Thus, L4
may require 2 channels to properly protect the
connections.  This requirement is twice the equivalent
survivable bandwidth.

Figure 9: Equivalent protection bandwidth is insufficient
for mesh networks

 Finally, note that the deterministic protection scheme
does not have these problems.
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G. SUMMARY

In this paper we have suggested a new paradigm for
guaranteed quality of protection. We have shown how the
paradigm provides absolute guarantees for all classes of
protection, including best-effort and preemptable (low-
priority) connections. We have also shown how the
paradigm extends to ring networks based on different
protection schemes and pointed out some of the
challenges of extending the paradigm to general mesh
networks. This paper provides insights into this problem,
most notably into the simpler and well-known case of a
mixture of protected and unprotected connections – that
is relevant even if additional grades of protection are not
adopted.

Much work is still needed in defining efficient algorithms
for choosing which survivable connections to protect and
which preemptable connections  to drop in rings
networks. In addition, many network optimization
problems for rings remain open for further research.
Beyond rings, challenges exist even in redefining a
sufficient equivalent protection bandwidth.
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I. APPENDIX

Lemma A.  Suppose we are given probabilities: Q(1),
Q(2),..., Q(m) for some m.  Let ESL(L1) denote








∑
k

kQ )( .    Then there is

• an integer n

• a collection of n binary m-vectors b(1), b(2),..., b(n)
(Thus, b(k) = (b1(k), b2(k),..., bm(k))

• a probability vector (f(1), f(2), ..., f(n))

with the following properties:

• Each binary vector b(k) has at most ESL(L1) ones
(and thus, it has m-ESL(L1) zeros).

• For each i, Q(i) = )()( kbkf
k

i∑
Proof .  Note that m denotes a collection of best-effort
protection connections that share protection bandwidth,
and in particular there are ESL(L1) channels of
protection bandwidth.  Each vector b(k) denotes a subset
of ESL(L1) connections that can use the protection
bandwidth simultaneously.  Those connections that
survive are denoted by "1" in the vector.

The probability of the configuration b(k) being chosen is

f(k).  Thus, )()( kbkf
k

i∑ is the probability that

connection i is chosen to survive.  Thus, we would want
the sum to equal to Q(i).

To prove the lemma, we will show how to construct the
binary vectors b() and the probability vector (f(1),...,f(n)).
First, we construct an interval I* that starts from 0.  This
interval I* consists of m subintervals, where the kth
subinterval corresponds to connection k and has length
Q(k).  We will refer to the kth subinterval by I(k).  Note
that I* will have length approximately equal to ESL(L1),
but it may be smaller.  If it is smaller, we extend it using
a "dummy" subinterval so that it has length exactly equal
to ESL(L1).

For each real value t that lands in interval I*, let H(t)
denote the subinterval it lands in.  Thus, if t lands in



subinterval I(k) then H(t) = k.  Now we divide I* into
subintervals of unit length.  Note that there will be
ESL(L1) of them.  Refer to these intervals by J(0),
J(1),..., J(ESL(L1)-1).  Let U denote a uniform random
variable distributed over the unit interval.  Note that U is
uniformly distributed over J(1).  Therefore, H(U) is a
random variable whose values are one of the best-effort
protected connections.  The probability of {H(U) = k} is
equal to the length of subinterval I(k) in J(1).  Similarly,
for each integer r < ESL(L1), U+r is a random variable
uniformly distributed over J(r).  In addition, H(U+r) is a
random variable whose values are from  the best-effort
protected connections.  The probability of {H(U+r) = k}
is equal to the length of subinterval I(k) in J(r).

Now, let h(0:U) = H(U+0), h(1:U) = H(U+1),...,
h(ESL(L1)-1:U) = H(U+ESL(L1)-1).  Then (h(0:U),
h(1:U), ... h(ESL(L1)-1:U) is a random vector.  Each
best-effort protected connection k will appear in the
vector with probability Q(k) because the likelihood of k
appearing is equal to the length of subinterval I(k).  We
should note that a connection k will appear in the vector
in at most one of the elements.  To see why this is so,
consider if it were not true.  Then it must be that I(k)
appears in two intervals J(x) and J(x+1) for some x, and
there is a value y such that y is in )()( kIxJ ∩ , and y+1

is in )()1( kIxJ ∩+ .  But this is impossible since I(k)

has length less than one, so we cannot have it contain
both y and y+1.

Now consider the vector (h(0:t), h(1:t), ... h(ESL(L1)-
1:t)).  Note that as t sweeps from 0 to 1, the vector
changes at a finite number of points, and between
consecutive points it is constant.  We can divide the unit
interval into a finite number of subintervals so that within
a subinterval the vector is constant.  We refer to these
subintervals as f-subintervals.  Let n denote the number
of f-subintervals, and let f(k) denote the length of the kth
f-subinterval.  Let b(k) be a binary vector that represents
those best-effort protected connections corresponding to
the kth f-subinterval.  These are exactly the f(k) and b(k)
values we are looking for.  Each b(k) corresponds to a
value for the vector (h(0:t), h(1:t), ... h(ESL(L1)-1:t)).
Thus, it is a binary m-vector with at most ESL(L1) ones.

Note that )()( kbkf
k

i∑ equals the length of all the f-

subintervals where bi(k) equals 1.  Note that when equals
bi(k) equals 1 it corresponds to some element in vector
(h(0:t), h(1:t), ... h(ESL(L1)-1:t)) being equal to i.  This
means that t, t+1, t+2..., or t+ESL(L1)-1 must in I(i).

Thus )()( kbkf
k

i∑  is equal to the length of I(i), which in

turn is equal to Q(i).


