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Abstract—Exchangeable random partition processes provide a
framework for statistical inference in large alphabet scenarios
from a Bayesian perspective. On the other hand, the notion of
the pattern of a sequence provides a framework for data com-
pression in large alphabet scenarios. Owing to the relationship
between data compression and parameter estimation, both these
approaches are related. Motivated by the possibilities of cross-
fertilization, we examine the redundancy of Bayes estimators
(specifically those that emerge from the ‘“Chinese restaurant
processes”) in the setting of unknown discrete alphabets from
a universal compression point of view. In particular, we identify
relations between alphabet sizes and sample sizes where the
redundancy is small- and hence, characterize useful regimes for
these estimators.

I. INTRODUCTION

For a number of statistical inference problems of significant
contemporary interest, such as text classification, language
modeling, and DNA microarray analysis, there is a necessity
to perform inference based on observed sequences of symbols,
where the sequence length or sample size is comparable
or even smaller than the set of symbols, the alphabet. For
instance, language models for speech recognition estimate
distributions over English words using text examples much
smaller than the vocabulary.

Inference in this setting has received a lot of attention, from
Laplace [1], [2], [3] in the 18th century, to Good [4] in the
mid-20th century, to an explosion of work in the statistics [5],
[6], [7], [8], [9], [10], [11], [12], [13], information theory [14],
[15], [16], [17], [18], [19] and machine learning [20], [21],
[22], [23] communities in the last few decades. While a major
strand in the information theory literature on the subject has
been based on the notion of patterns, a major strand in the
statistical literature has been based on the notion of exchange-
ability. Our goal in this note is to study the redundancy (an
information theoretic criterion) of exchangeable estimators that
naturally arise in the nonparametric Bayesian literature.

In probability and nonparametric Bayesian statistics, King-
man advocated the use of exchangeable random partitions
to accommodate the analysis of data from an alphabet that
is not bounded or known in advance [11]. The most pop-
ular exchangeable random partition process is the Chinese
restaurant process. In this paper we analyze the redundancy of
pattern probability estimators derived from popular Bayesian
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models. In particular, we investigate estimators derived from
the “Chinese restaurant process” and the “Poisson-Dirichlet
priors”.

If the alphabet size can be arbitrarily large with respect to
the sample size n, we show that the estimators do not have
o(n) redundancy. However, for sample patterns whose number
of unique elements is bounded, we can derive much tighter
bounds on the redundancy. In this setting the two-parameter
Poisson-Dirichlet (or Pitman-Yor) estimator is superior to
the estimator derived from the Chinese restaurant process.
However, we show that a mixture of Chinese restaurant process
estimators is weakly universal.

In order to describe our results, a variety of notions from
the literature of diverse communities is required. In Section II,
we describe this preliminary material and place it in context,
and in Section III we describe our main results.

II. PRELIMINARIES

Let Zj denote the set of all probability distributions on
alphabets of size k, Z,, be all probability distributions on
countably infinite alphabets, and let

T=TyU szc (1)
E>1

be the set of all discrete distributions irrespective of support
and support size.

For a fixed p, let ¥ = (v1,22,...,2z,) be a sequence
drawn i.i.d. according to p. We denote the pattern of x7 by
1™, The pattern is formed by taking 1); = 1 and

w={ ¥

]. + Hlan<i 1/)j

l‘,‘:l‘j,j<i

.ri;éxj7 Vi <1 2)

For example, the pattern of 2] = FEDERER is ¢] = 1232424.
Let ¢)™ be the set of all patterns of length n. We write p(™)
for the probability that a length-n sequence generated by p
has pattern ™.

A. Exchangeable partition processes

An exchangeable random partition refers to a sequence
(Cn : n € N), where C, is a random partition of the set
[n] ={1,2,...,n}, satisfying the following conditions: (i) the
probability that C,, is a particular partition depends only on
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the vector (s1, 2, ..., S, ), where sy is the number of parts in
the partition of size k, and (ii) the realizations of the sequence
are consistent in that all the parts of C,, are also parts of the
partition C,,11, except that the new element n + 1 may either
be in a new part of C,,;1 by itself or has joined one of the
existing parts of C),.

If one has a data sequence Xi,...,X, from a discrete
alphabet, one can partition the set [n] into component sets
corresponding to the symbols of the alphabet that have ap-
peared, where each part or component of the partition corre-
sponds to the set of locations at which a particular symbol
appears. When such partitions are generated from i.i.d. data
X, the corresponding sequence of random partitions is called
a paintbox process.

The remarkable Kingman representation theorem [8] then
asserts that the probability measure induced by any exchange-
able random partition is a mixture of paintbox processes,
where the mixture is taken using a probability measure (“prior”
in Bayesian terminology) on the class of paintbox processes.
Since each paintbox process corresponds to a discrete prob-
ability measure (the one such that i.id. X; drawn from it
produced the paintbox process), the prior may be viewed
as living on the set of probability measures on a countable
alphabet. (Actually, for technical reasons, the alphabet is
assumed to be hybrid, with a discrete part as well a continuous
part, and also one needs to work with the space of ordered
probability vectors, but we ignore this for ease of description.)

B. Dirichlet priors and Chinese restaurant processes

Not surprisingly, special classes of priors give rise to special
classes of exchangeable random partitions. One particularly
nice class of priors on the set of probability measures on a
countable alphabet is that of the Poisson-Dirichlet priors [24],
[5], [25] (sometimes called Dirichlet processes since they live
on the infinite-dimensional space of probability measures and
generalize the usual finite-dimensional Dirichlet distribution).

The Chinese restaurant process (or CRP) is related to the
so-called Griffiths-Engen-McCloskey (GEM) distribution with

parameter 6, denoted by GEM(#). Consider Wy, W, ... drawn
i.i.d. according to a Beta(1, 6) distribution, and set
=W 3)
pi=Wi[Ja-wy) vi>1 )
j<i

This can be interpreted as follows: take a stick of unit length
and break it into pieces of size W; and 1 — W;. Now take
the piece of size 1 — W7 and break off a W5 fraction of that.
Continue in this way. The resulting lengths of the sticks create
a distribution on a countably infinite set. The distribution of
the sequence p = (p1,p2,...) is the GEM(0) distribution.

Remark 1: Let w denote the elements of p sorted in de-
creasing order so that m; > w9 > ---. Then the distribution
of 7 is the Poisson-Dirichlet distribution PD(#) as defined by
Kingman.

Another popular class of distributions on probability vectors
is the Pitman-Yor family of distributions [26], also known

as the two-parameter Poisson-Dirichlet family of distributions
PD(a, 8). The two parameters here are a discount parameter
a € [0,1], and a strength parameter § > —«. The distribution
PD(c, @) can be generated in a similar way as the Poisson-
Dirichlet distribution PD(#) = PD(0, #) described earlier. Let

W1, Ws, ... be drawn i.i.d. according to a Beta(1 —«, 6 +na)
distribution, and again set
p1=W (5)
p=wi[[a-wy)  vi>1 6)
j<i

A similar “stick-breaking” interpretation holds here as well.
Now let p be equal to the sequence p sorted in descending
order. The distribution of p is PD(«, 6).

C. Patterns and partitions

The following interesting observation (which is rather easy
to make once one is aware of the definitions of the relevant
terms) emerged through discussions among participants in the
American Institute of Mathematics workshop on “Permanents
and modeling probability distributions” in September 2009.

Observation 1: There is a bijection between Kingman’s
paintbox processes and patterns of i.i.d. processes.

To put this observation in context, let us observe that
the information-theoretic approach to large alphabet problems
using patterns has been tackled primarily from a frequentist
perspective, whereas the statistics community has approached
the analogous problems primarily from a Bayesian point of
view. There are hence differences in the kinds of estimators
that have been proposed.

In this paper, we consider some implications of Observa-
tion 1. In particular, motivated by the correspondence between
paintbox processes and patterns, we consider a family of mix-
ture codes for patterns that correspond to the so-called Ewens
sampling formula, and show that inspite of its usefulness
for some inference tasks, the redundancies it yields for data
compression are much larger than necessary.

D. Pattern probability estimators

Given a sample z7 with pattern ™ we would like to
produce an pattern probability estimator. This is a function
of the form q(1,,41|¢)") that assigns a probability of seeing a
symbol previously seen in ¢" as well as a probability of seeing
a new symbol. In this paper we will investigate two different
pattern probability estimators based on Bayesian models.

The Ewens sampling formula [27], with origins in theoreti-
cal population genetics, is a formula for the probability mass
function of a marginal of a Chinese restaurant process corre-
sponding to a fixed population size. In other words, it specifies
the probability of an exchangeable random partition of [n] that
is obtained when one uses the Poisson-Dirichlet PD(#) prior
to mix paintbox processes. Due to the equivalence between
patterns and exchangeable random partitions, it implies that
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the probability of a pattern 1" is
quP(¢17 cee 71/)n)

om o
00 +1)-- (0 +n—1) U[(“_ DUNSINC
p=1
where ¢,, is the number of symbols that appear u times in 7
and m = ) ¢, is the number of distinct symbols in 7. In
particular, the predictive distribution associated to the Ewens
sampling formula or Chinese restaurant process is

745 Y appeared ;i times
a5 " (W, . n) = in .t @®)
”ie 1 corresponds to new.

More generally, one can define the Pitman-Yor predictor as

K=& ) appeared p times

PY o
4.6 (w‘wlavwn) = in 1/)13---7er; 9)
ma 4 corresponds to new.

where m is the number of distinct symbols in ¢7. In this case,
the probability assigned to a pattern 7 is

qPY(wlv cee 7¢n) =
O+a)(0+20) - (0+ma) ¢ (T(p—a—1)\
00 +1)---(O+n—1) H( Ir'(l—a) ) '

pu=1
(10)
E. Worst-case and average redundancy
How should we measure the quality of a pattern probability
predictor ¢? We investigate two criterion here: the worst-case

and the average-case redundancy. The redundancy of q on a
given pattern ¥" is

def p(¥")
R(q) = 10g (11
q(ym)’
The worst-case redundancy of q is defined to be
R(q) = sup max log p(®") (12)

q(ym)’
Recall that p(1)™) just denotes the probability that a length-n
sequence generated by p has pattern @)"—it is unnecessary to
specify the support here.

The average-case redundancy replaces the max over pat-
terns with an expectation over p:

1( E\IJVL

R(q) & supE {1 pwn)] 13

@ ver P L% q(pm) )
=supD (p || q) (14)
peT

That is, the average-case redundancy is nothing but the worst-
case Kullback-Leibler divergence between the distribution p
and the predictor q.

A pattern probability estimator is considered “good” if the
worst-case or average-case redundancies are sublinear in n.
Succintly put, it can be proved that if the redundancy grows
sublinear in n, the underlying probability of a sequence can
be estimated accurately almost surely.

III. REDUNDANCY RESULTS

We now describe our main results on the redundancy of
estimators derived from the prior distributions on Z. Proof
outlines are given here— full proofs are deferred to the journal
version of this work.

A. Chinese restaurant predictors

Previously [28] it was shown by some of the authors that
the worst-case and average-case redundancies for the CRP
estimator are both Q(nlogn), which means it is neither
strongly nor weakly universal. However, this estimator is not
quite as bad as this result might suggest, and a simple twist
yields an estimator that is weakly universal.

Our first new result is for the CRP estimator when we have
a bound on the number m of distinct elements in the pattern
.

Theorem 1 (Redundancy): Consider the estimator

g§'BF (47). Then for sufficiently large n and for patterns 97
whose number of distinct symbols m satisfies

5)

m<C- r (loglogn)?,
logn

the redundancy of the predictor g5 7 (y7) with § = m/logn
satisfies:

log 1)

og W = O(TL) .

Proof idea: This follows from a series of combinatorial
upper bounds and by using the assumptions § = m/logn and

n(loglogn)3

<3C- (16)

logn

mz@(logn(loglogn) ) [ |

This theorem is slightly dissatisfying, since it requires us to
have a bound on m. It turns out that by taking mixtures of
CRP estimators we can arrive at an estimator that is weakly
universal. That is, let qCRP be the CRP estimator with 6 =
m/logn. Then define

~CRP
= ch-,"LqTYL,TL ( )
n,m
for a set of positive coefficients c,, ,,, that sum to 1:

E Cnm = 1.
n,m

We can, for example, choose ¢, ,, = pres s
q* is a pattern probability estimator.

Lemma 1: For all discrete i.i.d. processes P with entropy
rate H, let M,, be the random variable counting the number
of distinct symbols in a sample of length n drawn from P.
The following bound holds

A7)

(18)

It is clear that

H
E[M,] < ——— +1.
logn

(19)
Proof idea: This a direct bound from the definition of
M,. |
Theorem 2 (Weak universality): For all discrete i.i.d. pro-
cesses p € Z with finite entropy rate,

Jim D(p || ¢%) = 0. (20)

1155



That is, ¢* is weakly universal.

Proof idea: The result follows from repeating the anal-
ysis of Theorem 1 and using Markov’s inequality applied to
Lemma 1. |

What the preceding theorem shows is that the mixture of
CRP estimators ¢* is weakly universal. However, ¢* is not
itself a CRP estimator.

B. Pitman-Yor predictors

We now turn to the more general class of Pitman-Yor
predictors. We can obtain a similar result as for the CRP
estimator, but we can handle patterns with m = o(n).

Theorem 3 (Worst-case redundancy): Consider the estima-
tor qf g(zp{l). Then for sufficiently large n and for patterns
YT whose number of distinct symbols m satisfies m = o(n),
the redundancy of the predictor ¢’ (17) with § = m/logn
satisfies:

log p(¥7)
ary (1)
It is well known that the Pitman-Yor process can pro-
duce patterns whose relative frequency is 0, e.g. the pattern
1%23 ... (n — k). Therefore it is not surprising that the worst-
case redundancy and average case redundancies can be bad.
However, the redundancy of ©(n) is significantly better than
the lower bound of Q(nlogn) proved in [28] for Chinese
restaurant processes, as the following Theorem shows.
Theorem 4 (Redundancies): Consider the estimator
qP¥ (¢7). Then for sufficiently large n, the worst-case
reélundancy and average case redundancy satisfy:

R(qiy) = O(n)
R(qiy) = ©(n).

= o(n). 1)

(22)
(23)

That is, ¢} is neither strongly nor weakly universal.

Proof ideas: The lower bound follows from considering
the singleton and a uniform distribution. The upper bound is
standard. ]

IV. CONCLUSIONS AND FUTURE WORK

In this note we investigated the worst-case and average-case
redundancies of pattern probability estimators derived from
priors on Z that are popular in Bayesian statistics. Both the
CRP and Pitman-Yor estimators give a vanishing redundancy
per symbol for patterns whose number of distinct symbols m is
sufficiently small. The Pitman-Yor estimator requires only that
m = o(n), which is an improvement on the CRP. However,
when m can be arbitrarily large (or the alphabet size is
arbitrarily large) the worst-case and average-case redundancies
do not scale like o(n). Here again, the Pitman-Yor estimator is
superior, in that the redundancies scale like ©(n) as opposed to
the (2(n log n) for the CRP estimator. While these results show
that these estimators are not strongly universal, we constructed
a mixture of CRP process (which is not itself a CRP estimator)
that is weakly universal.

On the other hand, one of the estimators derived in [16]
is exchangeable and has near optimal worst case redundancy,

growing as O(y/n). From Kingman’s results, this estimator
can be obtained using a prior on Z—however, this prior is
yet unknown. Finding this prior may potentially reveal new
interesting classes of priors other than the Poisson-Dirichlet
priors.
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