Reinforcement Learning Model

- Exploration versus exploitation
- Learning can be slow
Finite Markov Decision Processes

- **Parameters**
 - State: $X(n) = x(n)$, N states
 - Action: $A(n) = a_{ik}$ (action from state i performing action k)
 - Transition probability: $p_{ij}(a) = P(X(n+1) = j \mid X(n) = i, A(n) = a)$
 - Cost: $r(i,a,j)$ and discount factor γ, with $0 \leq \gamma < 1$
 - Policy: $\pi = \{u(0), u(1), \ldots\}$, policy mapping states into actions (stationary and nonstationary)
Value Functions

- Cost or value function (infinite horizon, discounted)
 \[J^\pi(i) = \mathbb{E} \left(\sum \gamma^n r(x(n),u(x(n)),x(n+1)) \big| x(0)=i \right) \]
 averaged over Markov chain \(x(1),x(2), \ldots\)
- Action-value function
 \[Q^\pi(i,a) = \mathbb{E} \left(\sum \gamma^n r(x(n),u(x(n)),x(n+1)) \big| x(0)=i, a(0)=a \right) \]
 averaged over Markov chain \(x(1),x(2), \ldots\)
Find policy \(\pi\) that minimizes \(J^\pi(i)\) for all initial states \(i\)
Recursive expression for value function

\[J^\pi(i) = E \left(\sum \gamma^n r(x(n),u(x(n)),x(n+1)) \mid x(0) = i \right) \]
\[= E(r(i,u(i),j) + \gamma \sum \gamma^n r(x(n+1),u(x(n+1)),x(n+2)) \mid x(1) = j) \]
\[= \sum_a \sum_j \pi(i,a) p_{ij}(a) (r(i,a,j) + \gamma J^\pi(j)) \]

Bellman equation for \(J^\pi \) allows for calculation of value function for policy \(\pi \).

Equation can be solved iteratively or directly.
Optimal Value Function

Want to find optimal policy to maximize value function

\[J^*(i) = \max_\pi J^\pi(i) \]

Can express optimal value function in terms of action-value function as

\[J^*(i) = \max_{u(i)} Q^*(i,u(i)) \]

where \(Q^*(i,u(i)) = \max_\pi Q^\pi(i,u(i)) \)

Then can find a recursive expression for \(J^*(i) \) by expanding RHS of equation similar to method found in previous slide for value function.
MDP Solution and Bellman Equation

This yields Bellman’s Optimality equation

\[J^*(i) = \max_u E_{x(i)} [r(i,u(i),x(i)) + \gamma J^*(x(i))] \]

Current cost: \(c(i,u(j)) = E_{x(i)} [r(i,u(i),j)] = \sum_{j=1}^{N} p_{ij} r(i,u(i),j) \)

Rewrite Bellman’s equation

\[J^*(i) = \max_u [c(i,u(i)) + \gamma \sum_{j=1}^{N} p_{ij} J^*(j)] \]

System of \(N \) equations with (equation/ state) and minimization

Find solution using dynamic programming methods
Policy Evaluation and Improvement

- **Policy Evaluation:** For a given policy we can iteratively compute value function

 \[J_{k+1}^{\pi}(i) = \sum_a \sum_j \pi(i,a) p_{ij}(a) (r(i,a,j) + \gamma J_k^{\pi}(j)) \]

 Iterative algorithm converges.

- **Policy Improvement:** Q function can be expressed iteratively as

 \[Q^{\pi}(i,a) = c(i,a) + \gamma \sum_{j=1,N} p_{ij}(a) J^{\pi}(j) \]

 u is said to be greedy with respect to \(J^u(i) \) if

 \[u(i) = \max_a Q^{\pi}(i,a) \text{ for all } i \]
Policy Iteration

1) Policy evaluation: \(J^u (i) \)
Cost to go function needs recomputation

\[
J^{u_n}(i) = c(i,u_n(i)) + \gamma \sum_{j=1,N} p_{ij} (u_n(i)) J^{u_n}(j)
\]
Solve set of \(N \) linear equations directly or iteratively.

2) Policy improvement: \(u_{n+1}(i) = \text{argmax}_a \, Q^{u_n}(i,a) \)
Value Iteration

- **Initialization:** start with initial value $J_0(i)$
- **Iterate:**
 \[Q(i,a) = c(i,a) + \gamma \sum_{j=1,N} p_{ij} J_n(j) \]

 \[J_{n+1}(i) = \max_a Q(i,a) \]

- **Continue until**
 \[|J_{n+1}(i) - J_n(i)| < \varepsilon \]
- **Compute policy:**
 \[u^* = \arg\max_a Q(i,a) \]
Dynamic Programming Comments

- Number of states often grows exponentially as number of state variables. (Bellman’s curse of dimensionality)
- For large state spaces it is infeasible to search entire state space to perform DP steps. Asynchronous DP used where partial searches and updates are made of state space.
- DP programs run polynomially in number of states and actions.
- GPI (Generalized Policy Iteration) often used instead of PI where Policy Evaluation and Policy Improvement done together.
- DP assumes complete knowledge of environment.
Approximate Dynamic Programming

- Incomplete information (do not know Markov transition probabilities)
- Curse of dimensionality
- Opt for suboptimal policy where $J^*(i)$ replaced by approximations of $J^*(i)$ that can consist of table lookup or parameterized by set of weights
- Use Monte Carlo simulations to learn policy
- Q learning
Q Learning Algorithm

- Define Q function
 \[Q^*(i,a) = \sum_{j=1,N} p_{ij}(a) (r(i,a,j) + \gamma \max_b Q^*(j,b)) \]
 \[J^*(i) = \max_a Q^*(i,a) \]

- Use iterative learning to learn Q function
 \[Q_{n+1}(i,a) = (1 - \mu(i,a)) Q_n(i,a) + \mu(i,a)(r(i,a,j) + \gamma J_n(j)) \]
 where j is random successor state with
 \[J_n(j) = \max_b Q_n(i,b) \]

- Monte Carlo Simulations: update only applies to current state-action pair all other pairs are not updated
Q Learning Comments

- **Convergence Theorem**: Q Learning algorithm converges almost surely to optimal Q function given certain conditions on step size (stochastic approximation conditions) and all state pairs are visited infinitely often.

- **Representations**: Table lookup works well, but networks parameterized by weights often learn very slowly.

- **Exploration vs. exploitation**: Ensure all state-action pairs are explored while also minimizing cost to go function.
Temporal Difference Learning

- Given a learning sequence where a termination occurs and a reward is given how do we learn?
- Credit assignment to each training input in the sequence can be performed using temporal difference learning.
- Iterative learning algorithms can then be established with inputs and target outputs.
- Class of TD(\(\lambda\)) algorithms where 0 \(\leq \lambda \leq 1\).
- Learning much slower than supervised learning.
Reinforcement Learning Applications

- Backgammon
- Navigation
- Elevator control
- Helicopter control
- Computer network routing
- Sequential detection
- Dynamic channel allocation (cellular system)
References