Projection of Data

- Principal Component Analysis (PCA) (maximize variance)
- Fisher Discriminant Analysis (FDA) (minimize in class scatter while maximizing distance between means)
- Canonical Correlation Analysis (CCA) (maximize covariance)
- Kernelize PCA, FDA, CCA
- Factor analysis, partial regression analysis
- Projection pursuit
- Independent Component Analysis
Adaptive Noise Cancellation

Given a signal S_1 mixed with additive impairment S_2 we can use an adaptive filter (using algorithms such as LMS) to cancel out the effects of the noise.
Modification to Noise Cancelling

Given X_1 and X_2 with Adaptive Filter 1 having access to S_2 and Adaptive Filter 2 having access to S_1, we can recover S_1 and S_2.
Independent Component Analysis

- Let $X = AU$ where A is a square mixing matrix, U is a random m vector, and X is the observed random m vector.
- Can we recover U from X if A and U are unknown?
- Under assumptions that U are components of U are independent random variables we can recover U from X under certain assumptions. We need to establish optimization criteria to recover U from X.
- Closely related to projection pursuit and factor analysis
- Applications: Blind Source Separation, Blind Deconvolution, Feature Extraction
PCA decorrelates inputs. However in many instances we may want to make outputs independent.

Inputs U assumed independent and user sees X. Goal is to find W so that Y is independent.
Applications of ICA

- Speech Separation: several speech signals are mixed together (cocktail problem)
- Array antenna processing: several narrowband signals mixed together from unknown directions
- Hyperspectral Images: images at multiple wavelengths
- Biomedical information: Brain signals, EEG data, FMRI data
- Financial market data analysis: extract dominant signals
ICA Solution

- $Y = DPU$ where D is a diagonal matrix and P is a permutation matrix.
- Algorithm is unsupervised. What are assumptions where learning is possible? All components of U except possibly one are nongaussian.
- Establish criterion to learn from (use higher order statistics): information based criteria, kurtosis function.
- Kullback-Leibler Divergence:
 \[D(f,g) = \int f(x) \log \left(\frac{f(x)}{g(x)} \right) \, dx \]
ICA Information Criterion

- **Kullback Leibler Divergence** nonnegative
- **Mutual Information** \(I(X;Y) = H(X) - H(X|Y) \) nonnegative
- Set \(f \) to joint density of \(Y \) and \(g \) to products of marginals of \(Y \) then

\[
D(f,g) = -H(Y) + \sum H(Y_i)
\]

which is minimized when components of \(Y \) are independent.

- When outputs are independent they will be a permutation and scaled version of \(U \).
ICA Preprocessing

- Signal processing and filtering
- Center data (remove means)
- Decorrelate data (apply PCA). If data is jointly Gaussian cannot do any more
Learning Algorithms

- Can learn weights by approximating divergence cost function established using contrast functions.
- Iterative gradient estimate algorithms can be used.
- Faster convergence can be achieved with fixed point algorithms that approximate Newton’s methods.
- Algorithms have been shown to converge.
ICA Example

- Three signals are linearly mixed

FIGURE 10.13 Waveforms on left-hand side: original source signals. Waveforms on right-hand side: separated source signals.