(a) yes: \(f_X(x) = xe^{-x}, f_Y(y) = e^{-y}, 0 < x < \infty, 0 < y < \infty \)

(b) no:
\[
\int_{x}^{1} f(x, y) \, dy = 2(1-x), 0 < x < 1
\]
\[
f_Y(y) = \int_{0}^{y} f(x, y) \, dx = 2y, 0 < y < 1
\]

(a) No, since the joint density does not factor.

(b) \(f_X(x) = \int_{0}^{1} (x + y) \, dy = x + 1/2, \ 0 < x < 1. \)

(c) \(P\{X + Y < 1\} = \int_{0}^{1} \int_{0}^{1-x} (x + y) \, dy \, dx \)
\[
= \int_{0}^{1} [x(1-x) + (1-x)^2 / 2] \, dx = 1/3
\]
For $j = i$: $P(Y = i \mid X = i) = \frac{P(Y = i, X = i)}{P(X = i)} = \frac{1}{36P(X = i)}$

For $j < i$: $P(Y = j \mid X = i) = \frac{2}{36P(X = i)}$

Hence

$$1 = \sum_{j=1}^{i} P(Y = j \mid X = i) = \frac{2(i-1)}{36P(X = i)} + \frac{1}{36P(X = i)}$$

and so, $P(X = i) = \frac{2i-1}{36}$ and

$$P(Y = j \mid X = i) = \begin{cases} 1 & j = i \\ \frac{2i-j}{2} & j < i \end{cases}$$

(a) First obtain marginal for Y: $p_Y(1) = \frac{1}{4}$, $p_Y(2) = \frac{3}{4}$.

Then we have that $p_{X\mid Y}(1\mid 1) = p_{X\mid Y}(2\mid 1) = \frac{1}{2}$.

And $p_{X\mid Y}(1\mid 2) = \frac{1}{3}$ and $p_{X\mid Y}(2\mid 2) = \frac{2}{3}$.

(b) Obtain marginal for X: $p_X(1) = \frac{3}{8}$ and $p_X(2) = \frac{5}{8}$.

Note that $p_{X,Y}(i,j) \neq p_X(i)p_Y(j)$ so X and Y are not independent.

c) $P(XY \leq 3) = \frac{1}{2}$, $P(X+Y > 2) = \frac{7}{8}$.

$P(X=1\mid Y>1) = \frac{1}{3}$ and $P(X=2\mid Y>1) = \frac{2}{3}$.
2) This problem is similar to the practice exam problem.

a) We have \(P(X = k) = \prod_{i=1}^{k-1} \frac{(3-i+1)(6)}{(9-i+1)(9-k+1)} \) for \(k = 1, \ldots, 4 \). Therefore \(P(X = 1) = \frac{2}{3}, P(X = 2) = \frac{1}{4}, P(X = 3) = \frac{1}{14}, P(Y = 4) = \frac{1}{84} \). To compute the joint pmf of \(X \) and \(Y \) we need to compute conditional pmf given by

\[
P(Y = j|X = k) = \prod_{i=1}^{j-1} \frac{(4-i-k)(5)}{(8-i+1)(8-j+1)}, \quad 1 \leq j \leq 5-k, k = 1, 2, 3, 4
\]

The joint pmf is given by

\[
p_{X,Y}(j, k) = P(Y = j|X = k)P(X = k)
\]

where

\[
p_{X,Y}(1, 1) = \frac{5}{12}, p_{X,Y}(1, 2) = p_{X,Y}(2, 1) = \frac{5}{28}
\]

\[
p_{X,Y}(3, 1) = p_{X,Y}(2, 2) = p_{X,Y}(1, 3) = \frac{5}{84}
\]

\[
p_{X,Y}(4, 1) = p_{X,Y}(3, 2) = p_{X,Y}(2, 3) = p_{X,Y}(1, 4) = \frac{1}{84}
\]

The marginal pmf of \(Y \) is the same as \(X \).

b) \(X \) and \(Y \) are not independent.

c) We get that \(m_X = m_Y = 10/7, \text{VAR}(X) = \text{VAR}(Y) = 45/98, \text{E}(XY) = 55/28 \), and \(\text{COV}(X, Y) = -15/196 \).

d) To simulate on matlab, first generate a permutation of the numbers 1 through 9. Then we can simulate drawing balls from an urn without replacement. Matlab code is below.

```matlab
n=10000; k=1:9; times=zeros(6,n);
u9= rand(9,n);
[a,perm] = sort(u9);
sample = [ones(1,6) zeros(1,3)];
blue = sample(perm);
for i=1:n,
times(:,i) = k(blue(:,i)==1)';
end
sojourn=diff([zeros(1,n);times]);
x=sojourn(1,:); y=sojourn(2,:);
mx=mean(x);my=mean(y); sx=var(x);sy=var(y);
cov=mean(x.*y) -mx*my; rho=cov/(sqrt(sx*sy));
```

The averages computed on matlab are 1.4277 for mean of \(X \), 1.4298 for mean of \(Y \), .4586 for variance of \(X \), .4599 for variance of \(Y \), and -.0718 for covariance of \(X \) and \(Y \). The correlation coefficient is -.1564.
3)

a) This was done in class. There are two methods. You can either either use moment generating functions or convolve pdfs. We have that $M_Z(t) = \lambda^2/(\lambda - t)^2$. This is MGF of a Gamma RV with parameter $k = 2$ with pdf $p_Z(z) = \lambda^2 z \exp(-\lambda z)u(z)$.

b) Again can use MGF or work with pdfs. Note that

$$M_W(t) = \mathbb{E}(\exp((X-Y)u)) = M_X(t)M_Y(-t) = \lambda^2/(\lambda^2-t^2) = .5\lambda/(\lambda-t) + .5\lambda/(\lambda+t)$$

We can take inverse transform to get that $p_W(w) = .5\lambda \exp(-\lambda|w|)$.

c) Here we work with CDF. We have that

$$F_V(v) = P(V \leq v) = P(\max(X,Y) \leq v) = P(X \leq v, Y \leq v) = (1 - \exp(-\lambda v))u(v).$$

To find pdf differentiate CDF to get that $p_V(v) = 2\lambda \exp(-\lambda v)(1 - \exp(-\lambda v))u(v)$.

To simulate using matlab generate two exponential RVs and perform function. lambda = 1; n=100000;
x = -1/lambda *log(rand(1,n)); y = -1/lambda *log (rand(1,n));
z=x+y, w=x-y; v = max(x,y);

![Graphs](image.png)

Figure 1: pdf of Z
Figure 2: pdf of W

Figure 3: pdf of V