
Hints for Homework 10, EE 361 Fall 2003, University of Hawaii 
November 7, 2003 
 
You will be building the single cycle MIPS processor in verilog.  Actually, the verilog 
module that you build is the processor excluding the Instruction Memory named “Mips”.  
This is illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Block diagram of project. 
 
When you turn in your projects, the IM should be hw10IM1.V, hw10IM2.V, or 
hw10IM3.V.  The testbench file should be hw10Main.V.  These files can be found at the 
homework web site.  You can also download a version of the register file at the web site.  
Caution:  some of these files may be buggy.  :) 
 
Note that these files are used for grading and not necessarily for debugging and testing.  
To test and debug the Mips module, you may design and use your own instruction 
memories (with programs you choose) and testbenches.  Often you should display more 
internal signals to find bugs. 
 
The following is a suggestion of how to proceed with the first project.  For the first 
project, the IM has a program that has only R-type instructions (add, and, or, slt, sub).  
Now we need a plan to build the MIPS which should includes how we will test the 

Mips 
module

Instruction 
Memory 

(IM) 
or  

Program 
Memory 
module 

PC ALU 

Single Cycle MIPS

Clock   Reset Aluresult 

Testbench 

pmaddr 

pminstr 

Signals used for testing
hw10IM1.V 
hw10IM2.V 
hw10IM3.V 
goes here 

You 
design this 



circuit.   To simplify, we can initially eliminate “loops” in the circuit, and then add them 
in later. 
 
Notice that there are two loops of circuitry.  The top loop updates the program counter, 
and the bottom loop processes data.  The top loop is easier to check since we only expect 
the PC to be incremented by 4, so we’ll check that first.  We’ll break up the bottom loop, 
as shown in Figure 2, by fixing the Writedata input of the register file to 1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Simplified MIPS 
 
Let your test bench run so that the processor resets, and then stop the simulation a time 
unit after that.  The PC value should be 0.  Check the output of the instruction memory 
and the controller.  Make sure all the outputs are correct.  Check if the input to the PC is 
PC+4.  To do all this checking, you need display statements in your verilog code. 
 
Now check the bottom loop of the circuit.  Make sure the outputs of the register file and 
ALU are correct (recall that the register file has been initialized to certain values).  Make 
sure the output of the MemtoReg multiplexer is equal to the output of the ALU.   
 
Now have the simulation run a little longer so that the first instruction is complete.  
Check if the value “1” (at the Writedata input of the register file) was written into the 
appropriate register.  If everything works then reconnect the bottom loop.  Then simulate 
the first instruction.  If that works then simulate up to the next instruction and so forth.  
Break up the circuit if necessary to find bugs. 
 
 

Shift�
left 2

PC

Instruction�
memory

Read�
address

Instruction�
[31–0]

Data�
memory

Read�
data

Write�
data

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU�
result

Zero

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31–26]

4

M�
u�
x

Instruction [25–0] Jump address [31–0]

PC+4 [31–28]

Sign�
extend

16 32Instruction [15–0]

1

M�
u�
x

1

0

M�
u�
x

0

1

M�
u�
x

0

1

ALU�
control

Control

Add ALU�
result

M�
u�
x

0

1 0

ALU

Shift�
left 226 28

Address

1 


