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Abstract—It has long been known that the compression redun-
dancy of independent and identically distributed (i.i.d.) strings in-
creases to infinity as the alphabet size grows. It is also apparent that
any string can be described by separately conveying its symbols,
and its pattern—the order in which the symbols appear. Concen-
trating on the latter, we show that the patterns of i.i.d. strings over
all, including infinite and even unknown, alphabets, can be com-
pressed with diminishing redundancy, both in block and sequen-
tially, and that the compression can be performed in linear time.

To establish these results, we show that the number of patterns is
the Bell number, that the number of patterns with a given number
of symbols is the Stirling number of the second kind, and that the
redundancy of patterns can be bounded using results of Hardy
and Ramanujan on the number of integer partitions. The results
also imply an asymptotically optimal solution for the Good-Turing
probability-estimation problem.

Index Terms—Large and unknown alphabets, patterns, set and
integer partitions, universal compression.

I. INTRODUCTION

SHANNON showed that every discrete source can be com-
pressed no further than to its entropy, and that if its distri-

bution is known, compression to essentially the entropy can be
achieved. However in most applications, the underlying distri-
bution is not known. For example, in text compression, neither
the distribution of words nor their dependencies on previous
words are known, and change with author, subject, and time.
Similarly, in image compression, the distribution and interrela-
tion of pixels are not known and vary from picture to picture.

A common assumption in these applications is that the
source distribution belongs to some natural class , such
as the collection of independent and identically distributed
(i.i.d.), Markov, or stationary distributions, but that the precise
distribution within is not known [1], [2]. The objective then
is to compress the data almost as well as when the distribution
is known in advance, namely, to find a universal compression
scheme that performs almost optimally by approaching the
entropy no matter which distribution in generates the data.
The following is a brief introduction to universal compression.
For an extensive overview, see [3]–[6].
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Let a source be distributed over a discrete support set
according to a probability distribution . An encoding of is a
prefix-free – mapping . It can be shown that
every encoding of corresponds to a probability assignment
over where the number of bits allocated to is approx-
imately . Roughly speaking, the optimal encoding
that is selected based on the distribution and achieves its
entropy, allocates bits to every .

The extra number of bits required to encode when is used
instead of is, therefore,

The worst case redundancy of with respect to the distribution
is

the largest number of extra bits allocated for any possible . The
worst case redundancy of with respect to the collection is

the number of extra bits used for the worst distribution in and
worst . The worst case redundancy of is

(1)

the lowest number of extra bits required in the worst case by any
possible encoder .

For any pair of distributions and , is nonnegative,
and therefore is always nonnegative. Note that when the
redundancy is small, there is an encoding that assigns to
every a probability not much smaller than that assigned to
by the most favorable distribution in .

In addition to worst case redundancy, one can define the av-
erage-case redundancy of

that reflects the lowest expected number of additional bits re-
quired by an encoding that does not know the underlying dis-
tribution. The average-case redundancy is clearly always lower
than the worst case redundancy. Since our primary interest is
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showing that low redundancy can be achieved, we concentrate
on worst case redundancy.

Most universal-compression results, even those applying to
distributions with memory, build on corresponding results for
i.i.d. distributions. Consequently, the redundancy of , the col-
lection of i.i.d.distributions over sequences of length drawn
from an alphabet of size , was studied extensively, and a suc-
cession of papers [7]–[14] has shown that for any fixed as
increases

(2)

where is the gamma function, and the term diminishes
with increasing at a rate determined by .

For any fixed alphabet size , this redundancy grows
logarithmically with the block length , hence, as increases
to infinity, the per-symbol redundancy diminishes,
implying that, asymptotically, i.i.d. distributions can be
represented essentially optimally even when the underlying
probability distribution is unknown.

In many applications, however, the natural alphabet which
captures the structure of the data is very large, possibly even
infinite. For example, the natural units that capture the structure
of English are words, not letters, and clearly not bits. English
consists of hundreds of thousands of words, comparable to the
number of words in a typical text. The natural symbols in image
coding are pixels, which may assume different values, and
the natural symbols in facsimile transmission are images of the
individual letters.

When, as in the above applications, the alphabet size is
large, is high too, and increases to infinity as grows.
Similar conclusions hold also when is allowed to grow with
the block length [15].

A systematic study of universal compression over arbitrary
alphabets was taken by Kieffer [4] who analyzed a slightly
less restrictive form of redundancy, related to weak universal
compression. He derived a necessary and sufficient condition
for weak universality, and used it to show that even under this
weaker requirement, i.i.d. distributions over infinite alphabets
entail infinite redundancy. Faced with Kieffer’s impossibility
results, subsequent universal compression work has typically
avoided general distributions over large alphabets.

On the theoretical side, researchers constructed compression
algorithms for subclasses of i.i.d. distributions that satisfy Ki-
effer’s condition. Elias [16], Györfi, Pali, and Van der Meulen
[17], and Foster, Stine, and Wyner [18] considered monotone,
namely, , i.i.d. distributions over the natural
numbers, Uyematsu and Kanaya [19] studied bounded-moment
distributions, and Kieffer and Yang [20] and He and Yang [21]
showed that any collection satisfying Kieffer’s condition can be
universally compressed by grammar codes.

Since actual distributions may not satisfy Kieffer’s condi-
tion, practical compression algorithms have typically taken a
different approach, circumventing some of the problems associ-
ated with large alphabets by converting them into smaller ones.
For example, common implementations of both the Lempel–Ziv
and the context-tree-weighting algorithms do not operate on

words. Instead, they convert words into letters, letters into bits,
and then compress the resulting sequence of bits. Such com-
pression algorithms risk losing the sequential relation between
words. For example, if the probability of a word depends on the
preceding four words, then it is determined by the previous 20
or more letters, namely, upwards of 160 bits, yet most programs
truncate their memory at significantly fewer bits.

Motivated by language modeling for speech recognition and
the discussion above, we recently took a different approach to
compression of large, possibly infinite, alphabets [15], [22].
A similar approach was considered by Åberg, Shtarkov, and
Smeets [23] who lower-bounded its performance when the
underlying alphabet is finite and the sequence length increases
to infinity, see Section V-C.

To motivate this approach, consider perhaps the simplest in-
finite-redundancy collection. Let , where
each is the constant distribution that assigns probability to
the length- sequence , and probability to any other
(constant or varying) sequence. If the source that generates the
sequence, namely, , is known, no bits are needed to describe
the resulting sequence . Yet a universal compression
scheme that knows only the class of distributions, needs to
describe which, as grows, requires an unlimited number of
bits. Therefore, both the worst case and average redundancy in-
curred by any universal compression scheme is infinite.

While disappointing in showing that even simple collections
may have infinite redundancy, this example also suggests an ap-
proach around some of this redundancy. The unboundedly many
bits required to convey the sequence clearly do not de-
scribe the sequence’s evolution, or pattern, but only the element

it consists of. It is natural to ask if this observation holds in
general, namely, whether the patterns of all sequences can be
efficiently conveyed, and the infinite redundancy found by Ki-
effer stems only from describing the elements that occur.

The description of any string, over any alphabet, can be
viewed as consisting of two parts: the symbols appearing in the
string and the pattern that they form. For example, the string

"abracadabra"

can be described by conveying the pattern

" "

and the dictionary

index
letter a b r c d

Together, the pattern and dictionary specify that the string “abra-
cadabra” consists of the first letter to appear (a), followed by the
second letter to appear (b), then by the third to appear (r), the
first that appeared (a again), the fourth (c), the first (a), etc.

Of the pattern and the dictionary parts of describing a
string, the former has a greater bearing on many applications
[24]–[30]. For example, in language modeling, the pattern
reflects the structure of the language while the dictionary
reflects the spelling of words. We therefore concentrate on
pattern compression.
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II. RESULTS

In Section III, we formally define patterns and their redun-
dancy. In Section IV, we derive some useful properties of pat-
terns, including a correspondence between patterns and set par-
titions. We use this correspondence to show that the number of
patterns is the Bell number and that the number of patterns with
a given number of symbols is the Stirling number of the second
kind.

We are primarily interested in universal codes for the class
of all i.i.d. distributions, over all possible alphabets, finite

or infinite. As mentioned earlier, for standard compression, the
per-symbol redundancy increases to infinity as the alphabet size
grows. Yet in Section V, we show that , the block redun-
dancy of compressing patterns of i.i.d. distributions over poten-
tially infinite alphabets is bounded by

Therefore, the per-symbol redundancy of coding patterns dimin-
ishes to zero as the block length increases, irrespective of the
alphabet size. The proofs use an analogy between patterns and
set partitions which allows us to incorporate celebrated results
of Hardy and Ramanujan on the number of partitions of an in-
teger.

In Section VI, we consider sequential pattern compression,
which is of interest in most practical applications. We first con-
struct a sequential compression algorithm whose redundancy is
at most

However, this algorithm has high computational complexity,
hence, we also derive a linear-complexity sequential algorithm
whose redundancy is at most

where the implied constant is less than . The proofs of the
sequential-compression results are more involved than those of
block compression, and further improvement of the proposed
algorithms involved is warranted.

Note that for both block and sequential compression, the re-
dundancy grows sublinearly with the block length, hence the
per-symbol redundancy diminishes to zero. These re-
sults can be extended to distributions with memory [31]. They
can also be adapted to yield an asymptotically optimal solution
for the Good-Turing probability-estimation problem [32].

III. PATTERNS

We formally describe patterns and their redundancy.
Let be any alphabet. For

denotes the set of symbols appearing in . The index of
is

and

one more than the number of distinct symbols preceding ’s first
appearance in . The pattern of is the concatenation

of all indexes. For example, if , ,
, , , and , hence,

Let

denote the set of patterns of all strings in . For example, if
contains two elements, then , ,

, etc. Let

denote the set of all length- patterns, and let

be the set of all patterns. For example

where is the empty string. Fig. 1 depicts a tree representation
of all patterns of length at most .

It is easy to see that a string is a pattern iff it consists of
positive integers such that no integer appears before the
first occurrence of . For example, , , and are pat-
terns, while , , and are not.

Every probability distribution over induces a distribu-
tion over patterns on , where

is the probability that a string generated according to has pat-
tern . When is used to evaluate a specific pattern probability

, the subscript can be inferred, and is hence omitted.
For example, let be a uniform distribution over . Then

induces on the distribution
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Fig. 1. A tree representation of patterns of length � 4.

For a collection of distributions over let

denote the collection of distributions over induced by prob-
ability distributions in . From the derivations leading to (1),
the worst case pattern redundancy of , i.e., the worst case re-
dundancy of patterns generated according to an unknown distri-
bution in is

(3)

where is any distribution over . In particular, for all

As mentioned earlier, we are mostly interested in , the
pattern redundancy of , the collection of arbitrary i.i.d. dis-
tributions over length- strings. We show that the per-symbol
redundancy diminishes to zero, and that diminishing
per-symbol redundancy can be achieved both by block and
sequential coding with a constant number of operations per
symbol.

IV. PRELIMINARIES

We first establish a correspondence between patterns and
set partitions. Set partitions have been studied extensively by
a number of well-known researchers [33]–[35], and in this
section and in Section V we use their properties to derive the
asymptotics of and of the growth rate of .

A. Set Partitions and Patterns

A partition of a set is a collection of disjoint nonempty
subsets of whose union is . For , let

with . Let be the set of all partitions of , and let

be the collection of all partitions of for all . For
example

For , let be the number of partitions of
into sets, and let

be the number of partitions of . For example, ,
, , , , ,

and so on, hence,

Note that is for and otherwise.
The numbers are called Stirling numbers of the

second kind while the numbers , are called Bell numbers.
Many results are known for both [36]. In particular, it is easy to
see that for all , Bell numbers satisfy the recursion

Set partitions are equivalent to patterns. To see that, let the
mapping assign to the set partition

where denotes the length of . For example, for the pattern

The following follows easily.

Lemma 1: The function is a bijection. Fur-
thermore, for every

B. Profiles

We classify patterns and set partitions by their profile, which
will be useful in evaluating the redundancy of i.i.d.-induced dis-
tributions.

The multiplicity of in is

the number of times appears in . The prevalence of a multi-
plicity in is
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the number of symbols appearing times in . The profile of
is

the vector of prevalences of in for .
Similarly, the profile of is the vector

where

is the number of sets of cardinality in . The following is
easily observed.

Lemma 2: For all ,

For example, the pattern has multiplicities ,
, and for all other . Hence, its

prevalences are , and
its profile is . On the other hand, we see
that

with its profile .
Let

be the set of profiles of all length- patterns, and let

be the set of profiles of all patterns. Clearly, and are also
the set of profiles of all set partitions in and , respectively,
and for all

For , let

be the collection of patterns of profile , and, equivalently, let

denote the collection of partitions whose profile is . It follows
that for all

C. Useful Results

In this subsection, we evaluate the size of and recall
Shtarkov’s result for computing the worst case redundancy.

Number of Patterns of a Given Profile
Let

be the number of patterns of profile . We get the following.

Lemma 3: For all and

Proof: There is only one pattern of length , the empty
string , hence the lemma holds.

There are many ways to derive this result. To see one, let
be a profile- partition of . For ,

let be the collection of elements in sets of size . Clearly

hence can be decomposed into the sets in

ways. Each set can be further decomposed into inter-
changeable sets of size in

ways. These two decompositions uniquely define the partition,
hence, the number of profile- partitions of is

Shtarkov’s Sum
We will frequently evaluate redundancies using a result by

Shtarkov [37] showing that the distribution achieving in
(1) is

It follows that the redundancy of a collection of distributions
over is determined by Shtarkov’s sum

(4)

Approximation of Binomial Coefficients
While finite-alphabet results typically involve binomial coef-

ficients of form for some constant , large alphabets often
require the calculation of . The following lemma provides
a convenient approximation.

Lemma 4: When and
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and when, in addition,

Proof: Feller’s bounds on Stirling’s approximation [38]
state that for every

(5)

Hence, for all

Taking derivatives, it is easy to see that for all ,

hence, for all

and

Therefore, for all

where

proving the first part of the lemma. When and
, , and the second part follows.

V. BLOCK COMPRESSION

We show that for all

namely, the redundancy of patterns of i.i.d. distributions is sub-
linear in the block length, implying that the per-symbol redun-

dancy diminishes to zero. To obtain these bounds we rewrite
Shtarkov’s sum (4) as

(6)

In the next subsection, we use this sum to compute
and . However, for larger , exact calculation of
the maximum-likelihood probabilities of patterns, namely,

, seems difficult [39]. Hence, in Sections V-B
and V-C, respectively, we prove upper and lower bounds on
the maximum-likelihood probabilities of patterns and use these
bounds to upper and lower bound .

A. The Redundancy of Patterns of Lengths and

We determine the redundancies and of i.i.d.-in-
duced distributions over patterns of lengths and , respectively.

There is only one distribution on , hence,

For length , consider the collection of distributions over

induced by the set of i.i.d. distributions over strings of
length . By Shtarkov’s sum

(7)

Since any constant i.i.d. distribution assigns , the
maximum-likelihood probability of is , hence,

Similarly, any continuous distribution over assigns
, hence,

Incorporating into (7), we obtain

Unfortunately, calculation of maximum-likelihood probabil-
ities for longer patterns seems difficult. Therefore, instead of
evaluating the sum in (6) exactly, we bound the maximum-like-
lihood probabilities of to obtain bounds on .

B. Upper Bound

We first describe a general bound on the redundancy of any
collection of distributions, and then use it to show that
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A General Upper Bound Technique
Let be a collection of distributions. The following bound

on the redundancy of is easily obtained.

Lemma 5: For all

Proof: The claim is obvious when is infinite, and for
finite , Shtarkov’s sum implies that

Intuitively, for finite , the lemma corresponds to first identi-
fying the maximum-likelihood distribution of from all distri-
butions in and then describing using this distribution. If not
all distributions are candidates for maximum-likelihood distri-
butions, the above bound can be improved as follows.

A collection of distributions dominates if for all

namely, the highest probability of any in is at least
as high as that in . The next lemma then follows immediately
from Shtarkov’s sum.

Lemma 6: If dominates , then

The preceding lemmas imply that the redundancy is upper-
bounded by the logarithm of the size of .

Corollary 7: If dominates , then

To illustrate this bound, we bound the standard redundancy
of strings distributed i.i.d. over finite alphabets.

Example 1: Consider the collection of all i.i.d. distribu-
tions over alphabets of size , which, without loss of generality,
we assume to be . Clearly

where and

dominates , hence, from Corollary 7

Similarly, since

it follows that for every and

Redundancy
We show that is at most the logarithm of the number

of profiles. Similar to the correspondence between patterns and
set partitions, we obtain a correspondence between profiles of
patterns and unordered partitions of positive integers, and use
Hardy and Ramanujan’s results on the number of unordered par-
titions of positive integers to bound the number of profiles, and
hence the redundancy.

Lemma 8: For all

Proof: Every induced i.i.d. distribution assigns the same
probability to all patterns of the same profile. Hence, the prob-
ability assigned to every pattern of a given profile is at most the
inverse of the number of patterns of that profile. Let consist
of distributions, one for each profile. The distribution as-
sociated with any profile assigns to each pattern of that profile a
probability equal to the inverse of the number of patterns of the
profile. clearly dominates and the lemma follows.

To count the number of profiles in , we observe the fol-
lowing correspondence with unordered partitions of positive in-
tegers.

An unordered partition of a positive integer is a multiset of
positive integers whose sum is . An unordered partition can be
represented by the vector , where denotes
the number of times occurs in the partition. For example, the
partition of corresponds to the vector .
Unordered partitions of a positive integer and profiles of pat-
terns in are equivalent as follows.

Lemma 9: A vector is an unordered partition of iff
.

Henceforth, we use the notation developed for profiles of pat-
terns in Section IV-B for unordered partitions as well.

Lemma 10: (Hardy and Ramanujan [40], see also [41]) The
number of unordered partitions of is

Lemmas 8 and 10 imply the following upper bound on the
pattern redundancy of .

Theorem 11: For all

In particular, the pattern redundancy of i.i.d. strings is sub-
linear in the block length, and hence the per-symbol redundancy
diminishes as the number of compressed symbols increases. We
note that the number of integer partitions has also been used by
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Csiszár and Shields [42] to bound the redundancy of renewal
processes.

C. Lower Bound

In the last section, we showed that the redundancy of patterns
of i.i.d. strings is . We now show that it is . We
provide a simple proof of this lower bound and mention a more
complex approach that yields the same growth rate, but with a
higher multiplicative constant.

Theorem 12: As increases

Proof: Let

be the support of a pattern with respect to a distribution
over an alphabet . As noted in [23], can be parti-
tioned into sets, each with equi-probable sequences,
where is the profile of . By standard max-
imum-likelihood arguments, the probability of any sequence
with profile is at most , hence,

(8)

From Shtarkov’s sum (4)

where follows from Lemma 3 and (8), from Feller’s
bounds (5), from the arithmetic-geometric mean inequality,

because each unordered partition into parts can be or-
dered in at most ways, and from Lemma 4. The theorem
follows.

Note that the constant in the bound can be increased by taking

in the proof, yielding

Generating functions and Hayman’s theorem can be used to
evaluate the exact asymptotic growth of

(9)

thereby improving the lower bound to the following.

Theorem 13: [43] (see also [15]) As increases

These lower bounds should be compared with those in Åberg,
Shtarkov, and Smeets [23] who lower-bounded pattern redun-
dancy when the number of symbols is fixed and finite and
the block length increases to infinity. While it is not clear
whether their proof extends to arbitrary , which may grow
with , the bound they derive may still hold in general. If so, it
would yield a lower bound similar to those described here. For a
more complete discussion, see [44]. Note also that subsequent to
the derivation of Theorem 13, Shamir et al. [45], [46] showed
that the average-case pattern redundancy is lower-bounded by

for arbitrarily small .

VI. SEQUENTIAL COMPRESSION

The compression schemes considered so far operated on the
whole block of symbols. In many applications the symbols ar-
rive and must be encoded sequentially. Compression schemes
for such applications are called sequential and associate with
every pattern , a probability distribution over

representing the probability that the encoder assigns to the pos-
sible values of after seeing . For example

is a distribution over , namely, , , and
are distributions over , while is a distribution over

.
Let be a sequential encoder. For each , induces a

probability distribution over given by

Some simple algorithms along the lines of the add-constant
rules were analyzed in [15] and shown to have diminishing per-
symbol redundancy when the number of distinct symbols is
small, but a constant per-symbol redundancy in general. In this
section, we describe two sequential encoders with diminishing
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per-symbol redundancy. The first encoder, , has worst case
redundancy of at most

only slightly higher than the upper bound on . However,
this encoder has high computational complexity, and in Sec-
tion VI-B, we consider a sequential encoder with linear
computational complexity and redundancy less than

which still grows sublinearly with though not as slowly as the
block redundancy.

A. A Low-Redundancy Encoder

We construct an encoder that for all , and all patterns
achieves a redundancy

The encoder uses distributions that are implicit in the block
coding results.

Let

denote the maximum-likelihood probability assigned to a pat-
tern by any i.i.d. distribution in . Recall that
is the number of patterns with profile , and that, as in Lemma 8,
every i.i.d. distribution assigns the same probability to all pat-
terns of the same profile. We, therefore, obtain the following
upper bound on the maximum pattern probabilities.

Lemma 14: For any pattern of profile

Based on this upper bound, we can construct the following
distribution over :

(10)

For , let

be the smallest power of that is at least , e.g., , ,
and . Note that .

For every , and patterns , let

be the set of all patterns that extend in , and let

be the probability of the set under the distribution .
The encoder assigns

and for all and it assigns the conditional
probability

(11)

We now bound the redundancy of .

Theorem 15: For all

Proof: Recall that

The theorem holds trivially for . For , rewrite

For all , Lemma 16 shows that

and Lemma 17 that

and the theorem follows.

Lemma 16: For all and

Proof: Observe that

where follows since for all and any i.i.d.-induced
distribution

by interchanging with the summation, and because
(10), together with Lemmas 10 and 14 imply that for all

Note that this inequality corresponds to the upper bound on
in Section V-B.
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Lemma 17: For all and all

Proof: We prove by induction on that for all
and all

(12)

The lemma will follow since for every , is a power of two.
The basis holds since for , , and all satisfy

To prove the step, note from (11) that for , all
and satisfy

hence,

(13)

By the induction hypothesis

(14)

By definition (10) and Lemma 10

On the other hand, distinct patterns have disjoint sets
, while patterns of the same profile have the same

probability , hence,

and thus,

It follows that

Incorporating this inequality and (14) in (13), we get (12).

B. A Low-Complexity Encoder

The evaluation of in (11) may take super-polyno-
mial time. We, therefore, present a linear-complexity encoder

whose sequential redundancy is less than hence
its per-symbol redundancy also diminishes to zero as the block
length increases, albeit at the slower rate of .

For notational convenience, let denote the prevalence of
in , , and let

For , define

and let

Finally, define the sequence

The encoder assigns

and for all and , it assigns the conditional
probability

(15)
where

is a normalization factor. It can be shown by induction that for
all and all patterns

Theorem 18: For all

where .
Proof: The theorem holds trivially for . For ,

it can be shown that for all

Since for all and ,

In Lemma 20, we show that for all and
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Since only terms are not nonzero, and using the inequality
for , we obtain

In Lemma 21, we show that for all and

Substituting , we obtain

The theorem follows by a simple evaluation of the constants
involved.

Theorem 19: The number of operations required to compute
all of

grows linearly with .
Proof: The conditional probabilities are calculated in (15).

Note that computing requires only multipli-
cations and comparisons. It therefore suffices to evaluate
the complexity of calculating .

Let be the set of perfect cubes. For
all , can be updated from
in constant time. For all , can be calculated in

time because there are at most multiplicities
such that .
Hence, the evaluation of can be

completed in time

Finally, the following two technical lemmas complete the
proof of Theorem 18.

Lemma 20: For all and

Proof: Let

.

Observe that

where we note that for , the second case will never
occur. Hence, for all and

(16)

Let maximize . It can be shown that

and for where

is the solution of

Hence the right-hand side of (16) simplifies to

implying

Lemma 21: For all and all patterns

Proof: As before, write as , and let

Recall that

For convenience, let , so that

takes different forms depending on whether
falls into , ,

, or . We, therefore, partition
into alternating nonempty segments
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with prevalences and which we call high and
low segments, respectively. More precisely, a high segment is an
interval such that

and a low segment is an interval such that

.

Observe that the first segment is always a high segment and the
last is always a low segment, hence, the number of high seg-
ments equals the number of low segments. Let be the number
of high (or low) segments, and be the th high segment.
Hence, for , is the th low
segment and is the th low segment.

For all in high segments, and
, while for all in low segments,

. For , let and . Define

Consequently

.

We upper-bound by

.

(17)
Recall that

From (17)

(18)

To simplify the above expression, observe that for ,
and , hence,

(19)

and that

(20)

where the last inequality follows because the profile maximizing

has , , and for
where
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Incorporating (19) and (20) into (18), we obtain
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