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Agnostic insurance tasks and their relation to
compression
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Abstract— We consider the following insurance problem.
Our task is to predict finite upper bounds on unseen
samples of an unknown distribution p over the set of
natural numbers, using only observations generated i.i.d.
from p. While p is unknown, it belongs to a known
collection P of possible models. To emphasize, the support
of the unknown distribution p is unbounded, and the game
proceeds for an infinitely long time. If the said upper
bounds are accurate over the infinite time window with
probability arbitrarily close to 1, we say P is insurable.

Insurability of P is characterized by a condition on the
set of models, that is both necessary and sufficient. We
examine connections between the insurance problem on the
one hand, and weak and strong universal compression on
the other. We show that if P can be strongly compressed,
it can be insured as well. However, the connection with
weak compression is more subtle. We show by constructing
appropriate classes of distributions that neither weak
compression nor insurability implies the other.

Keywords: insurance, `1 topology, non-parametric ap-
proaches, prediction, universal compression.

Insurance is a means of managing risk by transfering
potential losses to an insurer, for a price, the premium.
The insurer attempts to break even by balancing the
possible loss that may be suffered by a few with the
guaranteed premiums of many.

It is common practice among insurers to limit pay-
ments to a predetermined ceiling, even if the loss suf-
fered by the insured exceeds the ceiling. In both the
insurance industry and the legal regulatory framework
surrounding it, this is assumed to be common sense.
However, as we will show, it is not always necessary
to impose such ceilings. Moreover, in scenarios such as
reinsurance, a ceiling on compensation is not only un-
desirable, but also limits the very utility of the business.

A second problem arises in several modern settings
for which some sort of insurance is desirable, but no
viable scheme exists. For example, insuring against
network outages or attacks against future smart grids,
where the cascade effect of outages or attacks could
be catastrophic. In these settings, it is not even clear
what should constitute a reasonable risk model in the
absence of usable information about what might cause
the outages. If we are going to model these risks, how
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does one choose a class that is as general as possible,
yet, one on which the insurer can set premiums to remain
solvent?

A systematic, theoretical, as opposed to empirical,
study of insurance goes back to 1903 when Filip Lund-
berg [1] defined a natural probabilistic setting as part of
his thesis. In particular, Lundberg formulated a collective
risk problem pooling together the risk of all the insured.
Typically, these approaches involve studying the loss
parametrically, using, for example, compound Poisson
processes as the class of risk models. A more compre-
hensive theory of risk modeling has evolved [2] which
incorporates several model classes for the loss other than
Poisson processes, and which also includes some fat
tailed distribution classes.

In order to address problems in more modern setups,
we deviate here from classical literature on insurance
in two crucial aspects. First, we allow the loss to be un-
bounded, and second, we take a non-parametric approach
borrowing on a universal compression framework. To
clarify, unbounded loss is not just cosmetic—we do not
impose any other restrictions such as bounded entropy of
distributions, or bounded moments, or any assumptions
that effectively leave us with compact model spaces.

We use a probability measure on loss sequences to
model the loss. The model, i.e., the probability measure,
is unknown but assumed to belong to a known class
P of risk models. As mentioned before, we assume no
ceiling on the loss, requiring the insurer to compensate
the insured in full. For a given class of probabilistic
risk models, how should the premiums be set so that
the insurer compensates all losses in full, yet remains
solvent? If such schemes are possible, the model class
is said to be insurable.

The crux of insurability is this: we would like close
distributions to have comparable percentiles. In Section I,
we define what distributions are close, followed by what
distributions have “similar” percentiles. Examples of in-
surable and non-insurable classes of distributions can be
found in [3], where necessary and sufficient conditions
are derived for P to be insurable if, in addition, all
distributions P have finite (but not necessarily uniformly
bounded) spans. In Sections II and III, we will prove the
necessary and sufficient condition for insurability.

The similarity of the framework we adopt for predic-
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tion to recent universal compression or Bayesian non-
parametric statistics literature is not incidental. The re-
sults also reveal potentially interesting connections with
the notions of weak universality. In future work, we aim
to characterize the hierarchy of this prediction problem
relative to well known characterizations of compression.

Related to the insurance problem is the pricing prob-
lem that several researchers [4], [5] have considered for
the Internet—these adopt, among other techniques, game
theoretic principles to tackle the problem.

I. CONDITIONS CHARACTERIZING INSURABILITY

We model the loss at each time by numbers in N =
{0, 1, . . .}. A loss distribution is a distribution over N,
and let P be a set of loss distributions. P∞ is the
collection of i.i.d. measures over infinite sequences of
symbols from N such that the set of marginals over
N they induce is P . We call P the set of single letter
marginals of P∞.

An insurer’s scheme Φ is a mapping from N∗ → R+,
and is interpreted as the premium demanded by the
insurer from the insured after a loss sequence in N∗
is observed. Note that Φ is supposed to work for all
models in P and has no information on the underlying
distribution other than through the samples from the
distribution.

The insurer can observe the loss for a time prior to
entering the insurance game. However, we require the
scheme enters the game with probability 1 no matter
what loss model p ∈ P is in force. The insurer has to
keep setting finite premiums from the point it enters. For
convenience, we assume Φ(xn) =∞ on every sequence
xn of losses on which Φ has not entered.

We adopt an apparent simplification that involves no
loss of generality: at any stage if the insurer is surprised
by a loss bigger than the premium charged in that round,
the insurer goes bankrupt. As mentioned before, one then
sees the function Φ to represent the sum of total built
up past reserves of the insurer as well as the premium
to be set for the next round.

Definition 1. A class P∞ of measures is insurable if
∀ η > 0, there exists a premium scheme Φ such that ∀
p ∈ P∞,

p(Φ goes bankrupt ) < η

and if, in addition, for all p ∈ P∞,

p({Xn : lim
n→∞

min
1≤j≤n

Φ(Xj) <∞}) = 1. 2

In Theorems 1 and 4, we determine a condition on P
that is both necessary and sufficient for insurability.

A. Close distributions

Insurability of P∞ depends on the neighborhoods
of the probability distributions among its single letter
marginals P . The relevant “distance” between distribu-
tions in P that decides the neighborhood is

J (p, q) = D

(
p||p+ q

2

)
+D

(
q||p+ q

2

)
.

B. Cumulative distribution functions

In this paper, we phrase the notion of similarity in span
in terms of the cumulative distribution function. Note
that we are dealing with distributions over a discrete
(countable) support, so a few non-standard definitions
related to the cumulative distribution functions need to
be clarified.

For our purposes cumulative distribution function of
any distribution p is a function from R→ [0, 1], and will
be denoted by Fp. We obtain Fp by first defining Fp on
points in the support of p and the point at infinity. We
define Fp for all other points by linearly interpolating
between the values in the support of p.

Let F−1
p (1) be the smallest number y such that

Fp(y) = 1, and let F−1
p (x) = 0 for all 0 ≤ x < Fp(0).

If p has infinite support then F−1
p (1) = ∞. Note that

for 0 ≤ x ≤ 1, F−1
p (x) is now uniquely defined.

Two technical observations are in order since we are
dealing discrete distributions. Consider a distribution p
with support A ⊂ N. For δ > 0, let (T for tail)

Tp,δ = {y ∈ A : y ≥ F−1(1− δ)},

and let (H for head)

Hp,δ = {y ∈ A : y ≤ 2F−1(1− δ/2)}.

It is easy to see that

p(Tp,δ) > δ and p(Hp,δ) > 1− δ.

Suppose, for some δ, F−1
p (1− δ) > 0 and the premium

is set to F−1(1− δ), the probability under p of the loss
exceeding the premium is ≥ δ. If the premium is set to
2F−1

p (1− δ/2), the probability that the loss exceeds the
premium is ≤ δ. We will use these observations in the
proofs to follow.

C. Necessary and sufficient conditions for insurability

Existence of close distributions with very different
spans is what kills insurability. A scheme could be
“deceived” by some process p ∈ P∞ into setting low
premiums, while a close enough distribution lurks with
a high loss. The conditions for insurability of P∞ are
phrased in terms of its single letter marginals P .

Formally, a distribution p in P is deceptive if ∀
neighborhoods ε > 0, ∃ δ > 0 so that no matter what
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f(δ) ∈ R is chosen, ∃ a (bad) distribution q ∈ P such
that

J (p, q) ≤ ε

and
F−1
q (1− δ) > f(δ).

In the above definition, f(δ) is simply an arbitrary
number. However, it is useful to think of this number
as the evaluation of a function f : (0, 1) → R at δ,
particularly when thinking of the contrapositive of the
definition as below. Equivalently, a distribution p in P
is not deceptive if ∃ neighborhood εp > 0, such that ∀
δ > 0, ∃ f(δ) ∈ R, such that all distributions q ∈ P
with

J (p, q) ≤ ε

satisfy
F−1
q (1− δ) ≤ f(δ).

In Sections II and III, we show that a collection P∞
of i.i.d. processes is insurable iff there are no deceptive
distributions among its single letter marginals P .

II. NECESSARY CONDITION FOR INSURABILITY

Note that according to the conventions adopted with
defining cumulative distribution functions in Section I-
B, if for a sequence x, F−1

q (1− δ) > Φ(x), the scheme
Φ will be bankrupted with probability ≥ δ in the next
step.
P∞ is a set of i.i.d. measures over infinite sequences

from N, and let P denote the collection of their single
letter marginals.

Theorem 1. If P∞ is insurable, then no p ∈ P is
deceptive.
Proof In what follows, we will denote by p (or q) both
a measure ∈ P∞ as well as the single letter marginal
distribution ∈ P . The context will clarify which of the
two is meant if need be. We prove the contrapositive of
the theorem: if some p ∈ P is deceptive, then P∞ is not
insurable.

Pick 0 ≤ α < h−1( 1
2 ) and fix 0 < η < (1 −

2h(α))
(
1− 1

e

)
, the bounds chosen in order to satisfy

the technical requirements of the proof of Lemma 5.
Suppose p ∈ P is deceptive. We prove that P∞ is not
insurable by finding for each scheme Φ, a process q such
that

q( Φ goes bankrupt ) ≥ η.

Consider any Φ that enters on p with probability 1.
For all n, let

Rn = {xn : Φ(xn) <∞}

be the set of sequences of length n on which Φ has
entered and let N be a number such that

p(RN ) > 1− α/2. (1)

For any sequence xn, let A(xn) be the set of symbols
that appear in it. Recall that the head of distribution
p, Hp,γ , was defined in Section I-B to be the set
{y ∈ A : y ≤ 2F−1

p (1− γ/2)}, where A is the support
of p. Furthermore, define for all γ > 0

Rp,γ,n = {xn ∈ Rn : A(xn) ⊆ Hp,γ)}.

Set ε = 1
N2 . Since p is deceptive, there exists δ > 0

such that for all f(δ) ∈ R, there exists a distribution
q′ ∈ P satisfying both

J (p, q′) < ε =
1
N2

and F−1
q′ (1− δ) > f(δ).

While the number f(δ) can be arbitrary above, we focus
on a specific number dependent only on Φ. To define this
number, first pick k ≥ 2 large enough that

(1− δk)N+1/δ ≥ 1− α/2. (2)

Now, for all 0 < δ′ < 1, let

f(δ′) def= max
xi∈R

p,δk,i

N≤i≤N+d 1
δ′ e

Φ(xi).

A word about this parameter k, since it is not im-
mediately apparent why this should be defined. We will
effectively ignore the δk tail of the distribution p, and
focus only on strings in Rp,δk,i, N ≤ i ≤ N + 1

δ . The
advantage of doing so is technical—we will be able to
handle p and q as though they were distributions with
finite span. Furthermore, note that for N ≤ i < N + 1

δ ,
p(Rp,δk,i) ≥ 1− α from (1) and (2).

Let q ∈ P simultaneously satisfy

J (p, q) < ε =
1
N2

and F−1
q (1− δ) > f(δ).

Applying Lemma 5 to distributions over length-n se-
quences induced by the measures p, q ∈ P∞ correspond-
ing to the distributions above,

q(Rp,δk,N ) ≥ 1− 2
N
− 2h(α),

namely, Φ has entered with probability (under q) at least
1− 2

N −2h(α) for length N sequences. Since the insurer
cannot quit once it has entered, the scheme has entered
with probability (under q) at least 1 − 2

N − 2h(α) for
all n length sequences where n > N . Namely for all
n ≥ N ,

q(Rp,δk,n) ≥ 1− 2
N
− 2h(α),

For convenience, let M = d 1δ e. Let the distribution q
be in force. We have set things up so that Φ is bankrupted
whenever any element in the δ-tail of q follows any
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sequence in Rp,δk,i, where N ≤ i ≤ N +M −1. To see
this, note that

F−1
q (1− δ) ≥ f(δ) = max

Xi∈R
p,δk,i

N≤i≤N+d 1δ e

Φ(Xi). (3)

Equivalently, conditioned on any sequence in Rp,δk,i
with i between N and N +M − 1, the scheme Φ fails
with probability (under q) at least δ in the following step.

A sequence on which Φ has entered, but such that
Φ has not been bankrupted on any of the sequence’s
prefixes is a surviving sequence.

Consider a surviving sequence x ∈ Rp,δk,N in the
support of p at level N . Given x, let the conditional
probability that Φ is bankrupted in the following step be
δN . From (3), as mentioned before, we have δN ≥ δ.

Now, given x ∈ Rp,δk,N , the conditional probability
that Φ is bankrupted in at most two further steps is,

δN + (1− δN )δN+1 ≥ δ + (1− δ)δ,

where δN+1 is interpreted as the weighted average (over
surviving length-(N+1) suffixes of x) of the probability
that Φ goes bankrupt in step N + 2. In particular, note
that the inequality above holds because δN+1 ≥ δ thanks
to Equation (3).

Similarly, given a sequence x ∈ Rp,δk,N , the proba-
bility that Φ is bankrupted on suffixes of x with length
between N and N +M is

δN +(1−δN )δN+1 + . . .+(1−δN )δN+M

N+M∏
i=N+1

(1−δi)

for some δN , δN+1, . . . ,δN+M , all of which are ≥ δ.
Let q1 be the probability of all survivors in Rp,δk,N ,

and q2 be the probability of all sequences in Rp,δk,N
where Φ has already been bankrupted. Therefore q1 +
q2 = q(Rp,δk,N ).

Therefore Φ is bankrupted with probability

≥ q2 + q1

(
δN + . . .+ δN+M

N+M∏
i=N

(1− δi)

)

≥
(

1− 1
N
− h(α)

)(
1− (1− δ)d1/δe

)
, (4)

where δ stands for 1 − δ, and the second inequality
follows as in [3]. 2

III. SUFFICIENT CONDITION FOR INSURABILITY

The necessary condition in Section II is also sufficient
for insurability. As per conventions adopted in Section I-
B, recall that a distribution q is bankrupted with proba-
bility < δ if the premium set is at least 2F−1(1− δ/2).
In a slight abuse of notation, we will represent types
by probability distributions where convenient. Namely,
a string 123111 has a length-6 type (4/6, 1/6, 1/6).

A. Topology of P with `1 metric

We begin by showing that P with `1 topology is
Lindelöf. To do so, we obtain a countable basis (see [6]
for definitions) B for P with `1 topology.

Let the collection of all finite subsets of N be denoted
by #2N. Let Q be the set of all distributions over sets
in #2N, such that every probability value is rational.
Q is countable, since #2N is countable, and given any
set S ∈ #2N, the set of distributions in Q over S is
countable.

Let C be the collection of all distributions over N, let
Bq(ε) = {p ∈ C : |p− q| ≤ ε}, and let

B = {Bq(ε) ∩ P : q ∈ Q and ε rational }. (5)

Lemma 2. B is a basis for P with `1 topology. 2

As a corollary, we obtain that [6]

Corollary 3. P with the `1 topology is Lindelöf. 2

B. Sufficient condition

We have the machinery required to prove that if no
p ∈ P is deceptive, then the class of distributions is
insurable.

Theorem 4. If no p ∈ P is deceptive, then P∞ is
insurable.
Proof The proof is constructive. For any 0 < η <
1, we obtain a scheme Φ such that for all p ∈ P∞,
p(Φ goes bankrupt ) < η.

Since no p ∈ P is deceptive, it follows that for all
p ∈ P , ∃εp > 0 such that for all δ > 0, ∃fp(δ) ∈ R so
that all q with J (p, q) < εp satisfy

F−1
q (1− δ) < fp(δ).

We say that εp is the reach of p. For p ∈ P , define

Bp = {p′ ∈ P : J (p, p′) ≤ εp},

which will play the role of the set of distributions which
will not be bankrupted by setting premiums assuming p
is in force. Furthermore, for p ∈ P , let

Ip =
{
q : |p− q|1 <

εp
2(ln 2)2

16

}
.

For large n, Ip will play the role of the set of length-n
types on which the proposed scheme Φ will have entered,
in order to ensure that Φ enters with probability 1 on
strings generated by p. Note that if εp is small enough,
Ip ∩ P ⊂ Bp.

Since no p ∈ P is deceptive, the space P of dis-
tributions can be covered by the open sets Ip. From
Corollary 3, P is Lindelöf under the `1 topology. Thus,
there is a countable set Q, such that P is covered by the
collection of relatively open sets IQ, where

IQ
def= {Iq ∩ P : q ∈ Q}.
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The set IQ is countable. We index it by ι : IQ → N.
We now describe the scheme Φ.

a) Preliminaries: Consider a length-n sequence x
on which Φ has not entered thus far. Let the type of the
sequence be q, and let

P ′q = {p′ ∈ IQ : q ∈ Ip′}

be the set of distributions in P which potentially capture
q.

Note that q in general does not belong to P , so we
need further refinements to the set P ′.

If P ′q 6= ∅, we will refine the set of distributions that
could capture q further to Pq ⊂ P ′q . This is to ensure
that distributions in P ′q do not prematurely capture a
type. First we require (6) below to hold, to ensure that
if any distribution p′ ∈ Pq captures q generated by a
distribution p out of its reach, then the probability of
q under p is not too large. In addition, we impose (7)
as well to resolve a technical issue since q need not, in
general, belong to P .

For p′ ∈ P ′q , let the reach of p′ be ε
p′ , and define

D
p′

def=
ε4
p′

(ln 2)3

512
.

This quantity will lower bound the distance of the type q
in question from the distribution p in force if p happens
to be out of the reach of p′. Specifically, we place p′ ∈
Pq , if n satisfies

exp
(
−nD

p′/18
)
≤ η

2C(p′)ι(p′)2n2

36
π4
, (6)

and

F−1
q (1−

√
D
p′/3) ≤ logC(p′), (7)

where C(p′) is

C(p′) = 2

„
supr∈B

p′
F−1
r (1−

q
D
p′
/3)

«
.

Note that C(p′) is finite since p′ is not deceptive.
Comparison with Lemma 8 will give a hint as to why
the equations above look the way they do.

b) Description of Φ: If Pq = ∅, the scheme does
not enter yet. If Pq 6= ∅, let pq denote the distribution
in Pq with the smallest index.

All suffixes of the sequence are said to be trapped
by pq—namely, premiums will be based on pq . The
premium assigned for a length-m sequence trapped by
pq is

2fpq

(
6η/2

2π2n2

)
.

c) Φ enters with probability 1: First, we verify that
the scheme enters with probability 1, no matter what
distribution p ∈ P is in force. Every distribution p ∈ P
is covered by at least one of the sets in IQ. There is
thus a neighborhood ε > 0 around p,

I(p, ε) = {q : |p− q| < ε}

such that I(p, ε) ⊆ Q where Q ∈ IQ with the set with
the smallest index among all sets in IQ that contain
I(p, ε). Let p′ be the distribution which defines the set
Q in IQ.

With probability 1, the type of sequences generated
by p lies within I(p, ε) [7] (see also Lemma 8 for
an alternate proof). Now (6) will hold for all types in
I(p, ε), if we make n large enough—since C(p′) and
ι(p′) do not change with n and the right side diminishes
to zero polymonimally with n, while the left diminishes
exponentially to zero. Lastly, (7) will also hold almost
surely, since F−1

q (1−
√
D
p′/3)→ F−1

p (1−
√
D
p′/3)

with probability 1. which in turn is ≤ logC(p′).
Thus the scheme enters with probability 1.

d) Probability of bankruptcy ≤ η: We now analyze
the scheme. Consider any p ∈ P . Among sequences on
which Φ has entered, we will distinguish between those
that are in good traps and those in bad traps. If x is
trapped by p′ such that p ∈ Bp′ , p′ is a good trap.
Conversely, if p /∈ Bp′ , p′ is a bad trap.

(Good traps) Suppose a length-n sequence xn is in a
good trap, namely, it is trapped by a distribution p′ such
that p ∈ Bp′ . Recall that the premium assigned is

2fp′
(

6η
2π2n2

)
≥ 2F−1

p

(
1− 6η

2π2n2

)
,

where the inequality follows because p′ is not deceptive,
and p is within the reach of p′. Therefore, the scheme
is bankrupted with probability at most δ′ = 6η/2π2n2

in the next step. Therefore, sequences in good traps
contribute at most η/2 to the probability of bankruptcy.

(Bad traps) We will show that the probability with
which sequences generated by p fall into bad traps
≤ η/2. Pessimistically, the conditional probability of
bankruptcy given a sequence falls into a bad trap is 1.
Thus the contribution to bankruptcy by sequences in bad
traps is at most η/2.

Let q be any length-n type trapped by p̃ with reach
ε̃ such that p /∈ Bp̃, we obtain from Lemma 7 that
J (p, q) ≥ ε̃2 ln 2

16 . Hence, for all q trapped by p̃,

1
2 ln 2

|p− q|21 ≥ J 2(p, q)
ln 2
2

=
ε̃4(ln 2)3

512
= D2

p̃

Thus, for p ∈ P∞, the probability the type of a length
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n sequence q falls is trapped by a bad p̃

≤ p
(
|q − p|2 ≥ D

p̃
and F−1

q (1−
√
D
p̃

3
) ≤ logC(p̃)

)
≤ (C(p̃)− 2) exp

(
−
nD

p̃

18

)
≤ η(C(p̃)− 2)

2C(p̃)ι(p̃)2n2

36
π4

≤ η

2ι(p̃)2n2

36
π4
,

where the inequalities follow from Lemma 8 and
from (6) and (7). Therefore, the probability of sequences
falling into bad traps

≤
∑
n≥1

∑
p′∈IQ

η

2ι(p′)2n2

36
π4
≤ η/2

since
∑
p′∈IQ

1
ι(p′)2 ≤

∑
n≥1

1
n2 = π2

6 . The theorem
follows. 2

IV. APPENDIX

Proofs of Lemma 5, 6, and 7 can be found in [3].

Lemma 5. For distributions p and q over some
support A, with J (p, q) ≤ ε. For some S ⊂ A and
α < 1− ln 2 = .30685, if p(S) ≥ 1− α, then

q(S) ≥ 1− 2ε− 2h(α). 2

Lemma 6. For any two distributions p, q,

1
4 ln 2

|p− q|21 ≤ J (p, q) ≤ 1
ln 2
|p− q|1

and for any three distributions p, q, r,

J (p, q) + J (q, r) ≥ J 2(p, r)
ln 2
8
. 2

Lemma 7. Suppose a type q is trapped by p0 with
reach ε0. For all p ∈ P with J (p, p0) ≥ ε0,

J (p, q) ≥ ε20 ln 2
16

. 2

Lemma 8. Let p be any distribution over N, and let
δ > 0 and k be any number ≥ 2. Let Xn

1 be a sequence
generated i.i.d. p. Then

p(|q(Xn)− p| > δ and F−1
q (1− δ/3) ≤ k)

≤ (2k − 2) exp
(
−nδ

2

18

)
.

Proof There is a similar lemma in [8]. The difference
from [8] is that the right side of the inequality above
does not depend on p, and this property is crucial for its
use here.

The starting point is the following result. Suppose p′

has a finite support L. Then from [9], if we consider
length n sequences,

p′(|q(Xn)−p′| ≤ δ) ≥ 1−(2L−2) exp
(
−nδ

2

2

)
. (8)

Since k ≥ 2, consider the distributions p′ and q′ with
support A = {1, . . . ,k − 1} ∪ {−1}, obtained as

p′(i) =

{
p(i) i < k∑∞
j=k p(j) i = −1

,

and similary for q′. We apply (8) to obtain the Lemma.
From (8),

p′(|p′ − q′| > δ/3) ≤ (2k − 2) exp
(
−nδ

2

18

)
.

We will show that if F−1
q (1−δ/3) ≤ k and |p−q| > δ

then q′(−1) ≤ δ/3 and |p′ − q′| > δ/3. Thus, we will
have

p(|q(Xn)− p| > δ and F−1
q (1− δ/3) ≤ k)

≤ p′(|p′ − q′| > δ/3 and q′(−1) ≤ δ/3)

≤ (2k − 2) exp
(
−nδ

2

18

)
.

Finally, as in [8],

|p− q| −
k−1∑
l=1

|p(l)− q(l)|

≤
∞∑
j=k

(p(j)− q(j)) + 2
∞∑
j=k

q(j)

≤ |p′(−1)− q′(−1)|+ 2δ/3.

Since p(l) = p′(l) and q(l) = q′(l) for all l = 1, . . . ,k−
1, we have |p′ − q′| ≥ |p− q| − 2δ/3. If |p− q| ≥ δ in
addition, |p′ − q′| ≥ δ/3. 2
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