Signals \& Systems
 HW

Problem Set 1 (Due Wednesday 1/27)

Problems A1.1, A1.2, 1.52, 1.53, 1.54

Problem A1.1

Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.
(a) $x(t)=3 \cos \left(\sqrt{2} t+\frac{\pi}{4}\right)$
(b) $x(t)=e^{j(2 t-1)}$
(c) $x(t)=\left[\cos \left(4 t-\frac{\pi}{3}\right)\right]^{2}$
(d) $x(t)=\mathcal{O} d\{\cos (4 \pi t) u(t)\}$
(e) $x(t)=\mathcal{O} d\{\sin (4 \pi t) u(t)\}$
(f) $x(t)=\sum_{n=-\infty}^{\infty} e^{-(3 t-n)} u(3 t-n)$
(g) $x(t)=\cos (4 t)+\sin (4 \pi t)$.

Problem A1.2

Determine whether or not each of the following discrete-time signals is periodic. If the signal is periodic, determine its fundamental period.
(a) $x[n]=\sin \left(\frac{3}{7} \pi n-1\right)$
(b) $x[n]=\cos \left(\pi \frac{n}{8}-\pi\right)$
(c) $x[n]=\cos \left(\frac{\pi}{6} n^{2}\right)$
(d) $x[n]=\cos \left(\frac{\pi}{3} n\right) \cos \left(\frac{\pi}{6} n\right)$
(e) $x[n]=2 \cos \left(\frac{\pi}{4} n\right)+\sin \left(\frac{\pi}{3} n\right)-4 \cos \left(\frac{1}{2} n+\frac{\pi}{6}\right)$

Problem Set 2 (Due Monday 2/1)

Problems 1.21, 1.22, 1.32, 1.36

Problem Set 3 (Due Monday 2/8)

Problems A1.3, A1.4, 1.31, A1.5

Problem A1.3

Consider the following properties

1. Memoryless
2. Time-invariant
3. Linear
4. Causal
5. Stable

Determine which of these properties hold and which do not hold for each of the following continuous-time systems. Justify your answers. In each example, $y(t)$ denotes the system output and $x(t)$ is the system input.
(a) $y(t)=x(t-3)+x(3-t)$
(b) $y(t)=\cos (-3 t) x(t)$
(c) $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$
(d) $y(t)= \begin{cases}0 & t<0 \\ x(t)+x(2-t) & t \geq 0\end{cases}$
(e) $y(t)= \begin{cases}0 & x(t+2)<0 \\ x(t)+x(2-t) & x(t+2) \geq 0\end{cases}$
(f) $y(t)=x(2 t)$.
(g) $y(t)=\frac{d x(t-1)}{d t}$

Problem A1.4

Consider the following properties

1. Memoryless
2. Time-invariant
3. Linear
4. Causal
5. Stable

Determine which of these properties hold and which do not hold for each of the following discrete-time systems. Justify your answers. In each example, $y[n]$ denotes the system output and $x[n]$ is the system input.
(a) $y[n]=x[1-n]$
(b) $y[n]=x[2 n-2]-2 x[n-8]$
(c) $y[n]=\sin (\pi n) x[n]$
(d) $y[n]=\mathcal{E} v\{x[n+1]\}$
(e) $y[n]= \begin{cases}x[n-1] & n \geq 1 \\ 0 & n=0 \\ x[n] & n \leq-1\end{cases}$
(f) $y[n]= \begin{cases}x[n] & n \geq 1 \\ 0 & n=0 \\ x[n] & n \leq-1\end{cases}$
(g) $y[n]=x[-4 n+1]$

Problem A1.5

Determine if the following systems are
(a) time-invariant
(b) stable
(c) causal
(d) linear.

Justify your answer

1. A system with input $x(t)$ giving output

$$
y(t)=\int_{t-10}^{t} \cos (\tau) x(\tau) d \tau
$$

2. A system with input $x[n]$ giving output

$$
y[n]=n^{2} x\left[n^{2}\right]
$$

Problem Set 4 (Due Wednesday 2/17)

Problems 1.29, A1.6, A2.1, 2.24

Problem A1.6

When the input to a linear time-invariant system is given by $x_{1}(t)$, the output is $y_{1}(t)$, see the figure.
(a) If the input is $x_{2}(t)$ (see the figure), what is the output?
(b) If the input is $x_{3}(t)$ (see the figure), what is the output?

Problem A2.1

Compute the convolution $y[n]=x[n] * h[n]$ of the following pair of signals
(a) $x[n]=\alpha^{n} u[n-1], h[n]=\beta^{n} u[n], \alpha \neq \beta$.
(b) $x[n]=\alpha^{n} u[n-1], h[n]=\alpha^{n} u[n]$
(c) $x[n]=\left(\frac{1}{2}\right)^{n} u[n-3], h[n]=(-3)^{n} u[4-n]$.
(d) $x[n]=\left\{\begin{array}{ll}1 & 0 \leq n \leq 5 \\ 0 & \text { otherwise }\end{array}, h[n]= \begin{cases}1 & 1 \leq n \leq 5 \\ 1 & 8 \leq n \leq 13 \\ 0 & \text { otherwise }\end{cases}\right.$

Problem Set 5 (Due Monday 2/22)

Problems 2.22, A2.3, A2.4, A2.5

Problem A2.3

The following are the impulse responses of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers. The justification for stability needs to in terms of the summation condition.
(a) $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$
(b) $h[n]=(-1.8)^{n} u[n-2]$
(c) $h[n]=(2)^{n} u[-n+1]$
(d) $h[n]=\left(\frac{6}{5}\right)^{n} u[-1-n]$
(e) $h[n]=\left(-\frac{1}{8}\right)^{n} u[n]+1.01^{n+1} u[n+1]$
(f) $h[n]=\left(-\frac{1}{8}\right)^{n} u[n]+0.99^{n} u[1-n]$
(g) $h[n]=n^{2}\left(\frac{1}{2}\right)^{n} u[n-3]$

Problem A2.4

The following are the impulse responses of continuous-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers. The justification for stability needs to in terms of the integration condition.
(a) $h(t)=e^{-4 t} u(-t-2)$
(b) $h(t)=e^{-\frac{1}{2} t} u(t-2)$
(c) $h(t)=e^{-1.1 t} u(t+100)$
(d) $h(t)=e^{-4 t} u(t-2)$
(e) $h(t)=e^{-|t|}$
(f) $h(t)=t^{2} e^{-t / 2} u(t)$
(g) $h(t)=\left(2 e^{-t / 2}-e^{(10-t) / 10}\right) u(t+2)$
(h) $h(t)=\frac{t}{t^{2}+1}$

Problem A2.5

1. The impulse response of an LTI system is given by

$$
h(t)=\cos (t) u(t)
$$

If the input is $x(t)=u(t)$, calculate the output.
2. The impulse response of an LTI system is given by

$$
h[n]=(-2)^{|n|}
$$

If the input is $x[n]=u[n]-u[n-2]$, calculate the output.

Problem Set 6 (Due Monday 3/7)

Problems 2.30, 3.22, 3.23, 3.24, 3.26, A3.5

Problem A3.5

The following plot shows a signal $x(t)$ with period $T=4$.

1. Find the Fourier coefficients of $x(t)$.
2. Sketch the the signal with period $T=4$ having Fourier coefficients

$$
a_{k}= \begin{cases}0 & k=0 \\ -3 \frac{\sin \left(k \frac{\pi}{2}\right)}{k \pi} & k \neq 0\end{cases}
$$

3. Sketch the signal with period $T=4$ having Fourier coefficients

$$
a_{k}= \begin{cases}-\frac{1}{2} & k=0 \\ -6 e^{j \frac{\pi}{4} k} \frac{\sin \left(k \frac{\pi}{2}\right)}{k \pi} & k \neq 0\end{cases}
$$

4. Sketch the signal with period $T=4$ having Fourier coefficients

$$
a_{k}= \begin{cases}-\frac{1}{2} & k=0 \\ 3 j \frac{\sin \left(k \frac{\pi}{2}\right)}{k^{2} \pi} & k \neq 0\end{cases}
$$

