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Abstract

In this paper, we propose a novel Secure Name Service (SNS) framework for en-

hancing the service availability between collaborative domains (e.g., extranets). The

key idea is to enforce packet authentication through resource virtualization and uti-

lize dynamic name binding to protect servers from unauthorized accesses, denial of

service (DOS) and other attacks. Different from traditional static network security

schemes such as VPN, the dynamic name binding of SNS allows us to actively pro-

tect critical resources through distributed filtering mechanisms built in collaborative

domains. In this paper, we present the architecture of the SNS framework, the de-

sign of SNS naming scheme, and the design of authenticated packet forwarding. We

have implemented the prototype of authenticated packet forwarding mechanism on

Linux platforms. Our experimental results demonstrate that regular Linux platforms

are sufficient to support the SNS authenticated packet forwarding for 100Mbps and

1Gbps Ethernet LANs. To further improve the performance and scalability, we have

also designed and implemented unique two-layer fast name lookup schemes.
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1 Introduction

As we become more and more reliant on the Internet for a variety of network-

ing services, the number of network security attacks with the aim to abuse

or disrupt such services has also significantly increased. Furthermore, the so-

phistication of cyber attacks has also increased. The emergence of massive dis-

tributed denial-of-service (DDOS) attacks is one such example. Unfortunately,

because of the decentralized and open nature of the Internet, it is nearly im-

possible to protect the entire Internet from cyber attacks. In addition, the cost

of such a solution will be economically prohibitive, due to the sheer size of the

Internet. It is therefore important to selectively secure and protect Internet

services that are critical.

In this paper we propose a novel approach – Secure Name Service (SNS) –

to protect critical Internet services in collaborative domains (e.g., extranets

for business partners) from cyber attacks. As a result, transactions between

partners will not be stopped by attacks and servers are not clogged by attack-

ing traffic. The proposed SNS mechanism serves as a comprehensive first-line

of defense against unauthorized accesses, intrusions as well as DOS attacks.

SNS is built upon an extension of the standard domain name service (DNS).

The basic ideas behind the SNS approach are as follows: A critical Internet

service for trusted business partners and its associated resources (e.g., servers,

databases, etc.) are placed within a (virtual) secure zone in the network do-

main of the service provider, and correspondingly the names of the service and

its resources are placed within a secure name space, separate from the stan-

dard domain name space. Unlike DNS, where in response to a query for a host

name, the corresponding IP address of the host is returned, SNS only answers

queries originated from trusted collaborative network domains, and returns a

so-called secure handle (SH) instead of an IP address in response to a query

for a secure name. In other words, the IP addresses of protected resources such

as servers are always concealed from the requesters (even from a trusted do-

main), and the protected resources are in essence virtualized from both trusted

and untrusted users. Consequently, an unauthorized user cannot gain access to
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a protected resource (say, a server) directly via IP address spoofing. Further-

more, legitimate packets from a trusted domain carry security authenticators

– generated by the trusted domain based on secure handles – and are verified

before they can enter the secure zone containing the protected resources.

In this paper we describe the proposed SNS architecture, which is comprised of

two key mechanisms: i) secure name service, supported by secure name servers

that virtualize protected resources within secure zones, set up security associ-

ations (SAs) between domains, and perform resolutions for secure names; and

ii) authenticated packet forwarding, supported by security checkpoints (SCs) ,

security gateways (SGs), and secure IP layer (sIP), which verify security au-

thenticators, filter out illegitimate packets, and map secure handles to the IP

addresses of protected resources. In addition to proactive protection, we also

explicitly incorporate active monitoring and response mechanisms into the

proposed architecture for further ensuring the availability of critical services.

We will first introduce the SNS naming service, supported by SNS servers,

SNS-aware DNS servers, SH managers, and SNS stub resolvers. This mech-

anism is in charge of establishing secure associations between SNS domains,

managing the key distribution within an SNS domain, supporting secure name

resolutions, and maintaining the mapping between different identities in au-

thentication.

We then present the design of the SNS authenticated packet forwarding, sup-

ported by sIP layers at hosts, SGs of secure zones, and SCs of secure domains.

An sIP layer at a host authenticates and translates regular IP packets into

SNS packets, and vice versa. An SG authenticates secure packets from hosts,

other SGs, or SCs of the same domain and then forwards these packets to

corresponding parties based on their security mapping. An SC authenticates

packets from SCs of other secure domains or from SGs of its local domain. We

have implemented prototypes of these components in Linux Kernel 2.4.20 and

evaluated their performance through experiments. The performance and scal-

ability of SGs are the critical issues in the SNS forwarding mechanism because
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SGs need to perform a secure name translation for each packet. To address

these issues, we further design and implement two fast lookup schemes and

evaluate their performance through analysis, simulations and experiments.

The SNS framework exhibits several unique characteristics. Different from tra-

ditional static network-layer security schemes such as VPN, the SNS frame-

work combines name service and network-layer security into a unified frame-

work to protect critical service through resource virtualization and dynamic

name binding. Different from traditional authentication schemes such as Ker-

beros, the SNS framework provides an active defense mechanism against var-

ious attacks at the network level via packet filtering and adaptive forwarding

paths. In particular, the dynamic naming binding of SNS allows us to take

advantage of multiple routes in SNS domains to ensure the availability of ser-

vices even when some security components are clogged by attacking traffic.

Different from previous attack prevention schemes such as SOS and Onion

Routing that require relative large-scale infrastructures, the SNS framework

can be deployed incrementally in a domain-by-domain fashion.

SNS has its limitations. First, it focuses on packet authentication. Since most

applications in collaborative environments employ various security techniques

(e.g., TLS) to address the issues of data integrity, confidentiality, and non-

repudiation, we emphasize packet authentication to mitigate attacks at the

network layer. Furthermore, because we have limited resources in trusted SNS

domains to deal with flooding attacks on SCs and SGs, to further enhance ser-

vice availability, we may have to employ resources from a third-party to build

a protection hierarchy for restricting attack traffic from untrusted domains to

these points. In addition, SNS does not address the issue of entity authenti-

cation in a domain. Instead, it uses existing approaches such as Kerberos for

this purpose.

The remainder of this paper is organized as follows. In Section 2, we first

present the architecture and components of the SNS framework, and then dis-

cuss related work. In Section 3 we describe the design of SNS naming scheme.
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Fig. 1. SNS Framework.

We present the design of authenticated packet forwarding components and the

prototype of these components and our experimental evaluation in Section 4.

In Section 5, we devise two fast lookup schemes for secure name translation

and evaluate their performance through analysis, simulation and experiments.

We conclude the paper in Section 6.

2 SNS Architecture and Components

To protect critical resources from unauthorized accesses and DOS attacks,

we need multiple levels of security mechanisms to thwart different security

threats, e.g., packet replay, flooding, or IP spoofing. In this paper, we propose

the SNS framework as the first-line of defense to filter out invalid packets

and actively protect to critical resources. Fig.1 shows the setting of the SNS

framework for two collaborative domains. The secure name space consists

of secure domains, and each secure domain is comprised of an SNS server,

several secure zones and a number of security checkpoints (SCs). An SNS

server manages all secure zones and SCs in a domain. Each secure zone has

one or more security gateway(s) (SGs) which are responsible for secure packet

forwarding for the hosts of the zone.

As shown in Fig.1, we attach an SNS server to a leaf DNS server of the DNS

tree, e.g., SNS1 is attached to DNS1 and SNS2 is attached to DNS2. For

secure communication between these two domains, we first build a security

association (SA) between them using their SNS servers. Based on this SA,
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these two domains are able to resolve secure names and authenticate packets

from each other by inserting a packet authenticator into each packet. For inter-

domain packets across insecure networks, we use SCs at the borders of SNS

domains to validate them based on their inter-domain authenticators. For

packets within an SNS domain, we use SGs to validate them based on their

intra-domain authenticators. In addition, each host in a zone authenticates

itself to an SNS server before it uses an SG for secure communications.

Through resource virtualization and packet authentication, SNS is capable of

protecting critical servers from unauthorized accesses and malicious flooding

attacks. The key idea of SNS is to virtualize the identities of critical resources

in SNS-enabled domains by concealing their IP addresses through secure name

service. Different from a regular DNS name resolution that returns a static

IP address as the identity of a host, a secure name resolution returns a 32-bit

secure handle (SH) as the identity of a critical host. This SH is mapped to

the real IP address of the host in the SNS framework by SGs, and the IP

address is only known to the SNS server and associated SGs. Because this

virtualization allows us to decouple the static IP binding, we can not only

protect critical hosts from attacks originated from untrusted hosts, but also

dynamically adjust the binding to defeat attacks originated from compromised

trusted hosts in real-time.

The packet authentication in the SNS forwarding path allows us to build

multiple defense mechanisms along the path and apply various security policies

at SGs and SCs. When a client at a remote domain exchanges packets with

a critical server via a secure handle, packets are authenticated by SGs and

SCs on the path between the client and the server. These SGs and SCs filter

out invalid packets based on packet authenticators and actively take actions

against attacks. In the meantime, they also monitor traffic in order to detect

intrusions and brute-force DOS attacks. They can also be used by sophisticated

intrusion detection systems to identify and isolate compromised trusted hosts.

In addition to packet authentication, the SNS framework also helps us dis-
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tribute security check load along packet forwarding paths such that critical

services are not clogged due to the considerable security-check load on servers

under heavy attacks. Furthermore, the dynamic name binding of SNS allows

us to build a distributed filtering mechanism within secure domains. We can

choose a different packet forwarding path between two domains when one

ingress SC is dragged down by attacking traffic while another SC is normal.

Utilizing this dynamic mechanism, we are able to actively adapt to differ-

ent attack patterns to enhance service availability. We will study the issue of

maximizing the service availability, given a set of SCs between two domains.

Furthermore, we will also study the issue of building an SNS overlay network

such that SNS packets can traverse multiple SNS domains before reaching

their destinations, in order to further exploit different paths between SNS

domains.

2.1 Related Work and Discussion

In the following, we briefly review the related work in naming security, traffic

security, entity authentication, and proactive and reactive defense schemes.

For naming security, DNSSEC [1,2] mostly focuses on protecting the authen-

ticity and integrity of DNS databases and DNS responses. It uses the Public

Key Infrastructure (PKI) to generate digital signatures for the authentication

of the origin and integrity of DNS queries/responses. Although DNSSEC is

indeed an effective way to avoid DNS forgery, it does not address the issue

of protecting services under attacks. VPNs based on IPsec [3,4] or L2TP are

common approaches used to address the traffic security issue for extranets.

TLS [5] ensures the security at the transport layer. Kerberos [6] is designed

for entity authentication that allows a client and a server to mutually au-

thenticate each other across an insecure network. However, VPNs, TLS, and

Kerberos do not address the issue of service protection and active defense for

ensuring service availability.

Existing mechanisms to deal with DOS attacks are often classified into proac-

tive and reactive approaches. Proactive approaches eliminate packets with

forged source addresses, such as ingress filtering (RFC2827), Secure Over-
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lay Service (SOS) [7], Mayday [8], and VPN Shield [9]. Ingress filtering uses

known unambiguous traffic information to filter out invalid packets at an

ingress point, such as source addresses or destination addresses. Therefore,

it is suggested for stub domains and low-rate ingress links, but not for transit

domains and high-rate links. Ingress filtering does not preclude an attacker

using a forged source address within a legitimate prefix filter range. SOS re-

quires a wide-area overlay infrastructure with a large number of intermediate

nodes to filter out attacking traffic. VPN Shield provides a limited capability

of reacting to flooding attacks.

Reactive approaches for DOS attacks include firewalls, IP traceback [10], link

testing, input debugging [11], controlled flooding [12], logging [11], ICMP

trace-back [13], packet marking [12,10], aggregate-based congestion control,

etc. They all require either the coordination of human administrators of re-

lated domains or the modification of intermediate routers. The complexity

of the coordination and the slow error-prone human actions hinder the effec-

tiveness of these approaches. Furthermore, these approaches only work when

attacks have caused some damage, and are less useful to stop unknown attacks.

3 Secure Name Service (SNS)

We present the design of secure name service in this section. The main features

of the SNS naming system are 1) to build security associations (SAs) between

SNS servers, where an SA includes the IP addresses of corresponding security

gateways and secret keys for packet authentication between domains; 2) to

resolve secure name queries from trusted hosts; 3) to maintain a secure name

database for secure name resolutions; 4) to authenticate hosts, security gate-

ways, and checkpoints in a domain, and manage corresponding security keys

and identities in order to ensure intra-domain packet authentication between

hosts and gateways (or between gateways and checkpoints).

To support these features, we design the SNS naming system consisting of SNS

servers, SNS-aware DNS servers, SH managers at SGs, and stub resolvers
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at hosts. Within an SNS domain, we use an SNS server to authenticate all

parties in the domain and manage their key exchanges. We also use the SNS

server to maintain a secure name database and resolve secure name queries

for the domain. We further use SNS-aware DNS servers to help SNS servers

to set up SAs between domains in order to perform cross-domain secure name

resolutions and packet exchanges. In addition, we use SNS stub resolvers at

hosts and SH managers at SGs to recognize, authenticate, and forward secure

queries and responses to/from SNS servers. Lastly, we use SNS servers and

SH managers to ensure the correct mapping between different identities along

packet forwarding paths. In the following, we first introduce key concepts used

in SNS and then present the details of these components.

3.1 Secure Name Convention and SNS Identities

In order to facilitate a smooth transition of existing applications from the DNS

name space into the SNS name space, we choose the following approaches.

First, we let SNS use the same query interface as DNS such that no changes

are required for running these applications in the SNS name space. Further-

more, to distinguish secure name queries and DNS name queries at the same

interface, we define an secure naming convention based on the DNS naming

scheme: For a host with a DNS name x.y.z.w, we define its SNS domain name

as x sec.y.z.w, by replacing the bottom label x with x sec. As a result, we can

easily migrate a host from the DNS name space into the SNS name space and

support applications to access both the secure and the regular name space at

the same time in the transition process.

In the SNS naming framework and forwarding mechanism, we define other

three identities combining with an IP address to represent a host at different

stages of packet forwarding, i.e., Secure Handle (SH), Host ID and External

Identity. Because SNS uses the same query interface as DNS, we only have

a 32-bit field in a response of a secure name query. Therefore, we use a 32-

bit secure handle (SHX) in a response as the SNS identity to represent a

destination host X at an SG when a packet is sent from a host to the SG.
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This SNS identity is viewed as a virtual IP address by applications, and it is

used in the authenticated packet forwarding in a secure zone from a host to

an SG. When a packet is forwarded from an SG to a host, we use the host

IP address to represent the host. Because we hide each host behind an SG,

to represent each host at the SG, we also assign a host identifier H IDX to

a host X. Using this host ID, we further define a pair (SG IPX , H IDX) as

the external identity of host X outside its home zone, where SG IPX is the

IP address of the SG for host X.

3.2 Components of SNS Naming System

SNS server SNS servers are the key components in the SNS naming frame-

work, which perform in the control functionalities of the SNS framework, such

as building cross domain SAs, maintaining secure name databases, resolving

secure name queries, authenticating all parties in a domain and managing

their key exchanges. In the following, we focus on the establishment of SAs

and introduce secure name resolution in Section 3.3. We leave the details of

intra-domain key management and secure name database in a technical re-

port [14].

In order to establish trust relationship between SNS domains, we assume that

an SNS server i obtains a certificate Ci from a trusted third party (TTP)

through a public key system such as PKI. The Ci includes its name SNSi and

its public key KUi. Consequently SNSi is able to use its private key KRi to

sign data exchanged with other SNSs over insecure networks. We denote the se-

curity parameter of an SNS server i as Ai, where Ai = {SG IPi, H IDi, KUi, Yi};

(SG IPi, H IDi) is its external identity; KUi is its public key; and Yi is its

Diffie-Hellman public value; SG IPi is the IP address of its SG; H IDi is its

host ID at its SG. When SNSi needs to set up an SA with another SNS, it

uses KRi to sign its security parameters KRi(Ai), and send this signature

with its Ci and Ai to another SNSj. Upon receiving this message, SNSj ver-

ifies the signature using Ci and Ai in the message. After two SNSs validate

each other’s signature, they compute a shared secret key based on exchanged

Diffie-Hellman public values and then use this key for their SA. For ease of
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discussion, we assume all SNS servers have chosen the same Diffie-Hellman

parameter a and q, where q is a large prime and a is a prime root of q. In the

following, we introduce a detailed protocol for exchanging security parameters

with the help of SNS-aware DNS servers.

SNS-aware DNS server We extend a leaf DNS server into an SNS-aware

DNS server such that the SNS service can utilize the DNS service as a boot-

strap point for basic naming service. Utilizing the recursive service at leaf

DNS servers, SNS servers are able to exchange security parameters for build-

ing inter-domain SAs without revealing their IP addresses. As shown in Fig.1,

we attach an SNS server to a leaf DNS server, where DNS1 is the authoritative

DNS name server for domain 1 and SNS1 is its SNS name server, and DNS2

is the authoritative DNS name server for domain 2 and SNS2 is its SNS name

server. We make two minor changes on a DNS server. First, we add a new

DNS resource record of type RRSNS, in which the RDATA field [RFC1034] is

used to pass the security parameter of an SNS server. Second, we add a new

type of DNS query and response, named TSNS. Corresponding to this type of

query/response, we add a few operations utilizing the recursive service at leaf

DNSs, as illustrated in Fig.2. We present the protocol in the following.

(1) When SNS1 needs to set up an SA with SNS2, SNS1 sends a DNS query Q1 of

type TSNS to its DNS server DNS1. The QNAME of Q1 includes the name of

DNS2, where DNS2 is the authoritative DNS server of SNS2. The additional

section of Q1 includes a resource record of type RRSNS , whose RDATA field

holds A1, the security parameter of SNS1. The header of Q1 has the recursive

desired (RD) bit set for demanding DNS1 to perform a recursive service.

(2) During the recursive service for Q1, DNS1 first finds the IP address of DNS2

through standard DNS service, shown as Q′

1 and R′

1 (or multiple iterative

queries). Then DNS1 generates a DNS query Q2 of type TSNS to DNS2, in

which the QNAME is a NULL string, the recursive desired (RD) bit is set,

and A1 is passed in the additional section.

(3) When DNS2 recognizes Q2 of type TSNS, it sends a query Q3 to SNS2, passing

A1 in the additional section of message.

(4) From Q3, SNS2 receives A1. Then SNS2 sends a DNS response R3 of type

TSNS to DNS2, including its security parameters A2.
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(5) When DNS2 receives R3, it sends a response R2 to DNS1 with A2.

(6) From R2, DNS1 obtains A2 and passes them in a response R1 to SNS1.

Now SNS1 and SNS2 are able to verify each other’s security parameters,

generate their shared Diffie-Hellman secret keys for their SA, and install their

shared secret keys at corresponding SCs. Consequently SNS1 and SNS2 are

able to exchange their SNS queries and responses through this SA and their

external identities.

SNS stub resolver We replace a standard DNS stub resolver with an SNS

stub resolver at a client host. This SNS stub resolver has the same interface

gethostbyname() as a standard DNS stub resolver. While it forwards regular

DNS queries to a DNS server as a DNS stub resolver, it is also able to recognize

a query for a secure name based on the secure naming convention, and for-

wards the query to its SNS server for secure name resolution. In other words,

this resolver acts as the entrance of the secure name space with no changes
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required in the current DNS and applications. A stub resolver obtains an SH

of its SNS from a Secure IP layer 2 at the host, and forwards secure name

queries to UDP/TCP port 53 of its SNS. When a response of a query arrives

a stub resolver, it passes the SH in the response as an IP address back to an

application.

SH Manager An SH manager maintains an SH database for all secure names

at an SG such that the authenticated forwarding mechanism at the SG is able

to map SHs to their external identities or IP addresses of local hosts in secure

name translations. We use a cache-only SH database at an SG, which is first

initialized by an SNS server with local secure names and then populated by

cached remote names. Since this database is searched for each secure packet

translation at an SG, we must ensure fast lookups in this database. We develop

fast lookup mechanisms in Section 5.

3.3 SNS name resolution

A secure name resolution maps a secure name into an SNS identity (an SH).

The basic process of resolving a secure name query is shown in Fig.4. An

SNS stub resolver S1 at a host recognizes an SNS query Q for the identity of

a secure name X, and then forwards this query to its SNS. When this query

arrives at SG1, SG1 authenticates this message and then forwards it to SNS1.

SNS1 looks up its secure name database and finds the external identity of X,

2 A secure IP layer is a component of the SNS authenticated forwarding mechanism

introduced in Section 4, which is configured with the SH of an SNS.
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i.e., (SG IPX , H IDX). (If X is not in the database, SNS1 will obtain the

external identity of X by issuing a secure name query to SNS server SNS2

that manages secure name X, as depicted in Fig.5. We refer readers to [14]

for the details of this process.) Then SNS1 passes the external identity of

X to SH manager M1 at SG1 in a response R′. Upon receiving R′, M1 first

checks if the external identity of X is in its SH database. If it is, M1 finds

SHX from the database; otherwise, M1 inserts an entry into the SH database

for this external identity and obtains SHX . Then, M1 sends a response R to

S1 with the SHX as the response to query Q. We are currently implementing

this SNS naming framework. We have implemented the authenticated packet

forwarding mechanism as introduced in the next section.

4 Authenticated Packet Forwarding

4.1 Design of Authenticated Packet Forwarding

The secure packet forwarding mechanism consists of secure IP (sIP) layers at

end hosts, security gateways (SGs) of secure zones, and security checkpoints

(SCs) of secure domains. As shown in Fig.6, domain U has an SC C1 and

an SG G1 that is responsible for secure name translations of secure zone A.

When a client needs to access a remote secure host dst, it first obtains the

secure handle SHdst through a secure name resolution. It then uses this SH

as the destination IP address for the packet sent to G1. G1 forwards a packet

to the secure destination based on the SH.

An sIP Layer at a host is a small patch to the regular IP layer. When ini-

tialized, this layer authenticates itself to an SNS server using a Kerberos-like

mechanism based on a pre-configured secret between the host and the SNS. As

a result, it obtains a host ID, a host key, the IP address of its SG and SHSNS

from the SNS. It uses these parameters for secure communications and secure

name queries. For outgoing traffic, the sIP layer intercepts an out-bound reg-

ular IP packet destinated to a secure handle, translates it into a host-secure

IP packet, and then forwards this packet to an SG. For incoming traffic, the

sIP layer captures an in-bound host-secure IP packet from an SG and checks

14
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its authenticator. If it is invalid, the packet is dropped. Otherwise, the packet

is translated back to a regular IP packet and passed to the transport layer at

the host.

An SG of a secure zone forwards host-secure IP packets to their destination

gateways based on their secure handles, or vice versa. A host-secure packet

from a host to a gateway has a host-gateway authenticator based on their

shared keys. For outgoing traffic, when a host-secure packet arrives at an

SG, the SG first validates its origin via the host-gateway authenticator. If in-

valid, the packet is dropped. Otherwise, the gateway performs a Secure Packet

Translation (SPT), in which the SG first uses the secure handle to look up the

destination address and keys, and then translates the packet into a zone-secure

packet and forwards it to the destination gateway. Notice that the destination

of a zone-secure packet is a remote SG. When a destination gateway receives

a zone-secure packet, it first checks its authenticator. If invalid, the packet is

dropped. Otherwise, the packet is translated into a host-secure packet, and

then forwarded to the destination host. An additional feature of an SG is to

monitor and report suspicious host activities. As a result, we can detect and

isolate compromised hosts at SGs.

An SC authenticates ingress or egress secure packets. Using Border Gateway

Protocol (BGP) announcements, we can control the routes of egress/ingress

packets to be routed to chosen checkpoints. An egress zone-secure packet is

forwarded from an SG G to an SC C, and it has a zone authenticator generated

using the shared keys between G and C. If C finds that the authenticator of

a packet is invalid, the packet is dropped. Otherwise, it translates the packet
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into a domain-secure packet by replacing its zone authenticator with a domain

authenticator, and forwards this packet to the ingress checkpoint C ′ of the

destination domain. If C ′ finds that the domain authenticator of a packet is

invalid, the packet is dropped. Otherwise, C ′ translates the packet into a zone-

secure packet by replacing its domain authenticator with a zone authenticator.

It then forwards the packet to the destination gateway. In the SNS framework,

we use border routers to route packets to SGs through SCs such that we can

use SCs to filter out invalid packets to SGs and distribute the security check

load along the forwarding path.

Illustration of Authenticated Packet Forwarding We use an example as

shown in Fig.6 to explain how the SNS framework achieves the secure com-

munication between Host src in Zone A of Domain U and Host dst in Zone

B of Domain V , without revealing their IP addresses. Assume an application

on host src first obtains a secure handle SH dst of host dst, and it then con-

structs a regular IP packet using SH dst as the destination address, as shown

in Fig.3.a. Before this packet is passed the link layer at src, it is intercepted

by the sIP layer at src. The sIP layer recognizes this packet by its secure

handle, and then translates it into a host-secure packet, as shown in Fig.3.b.

The packet is then forwarded as a regular IP packet. When the packet reaches

gateway G1 of Zone A, G1 translates the IP packet into a zone-secure packet,

and forwards it to checkpoint C1, as shown in Fig.3.c. The packet has a source

IP address of IP G1 and a destination IP address of IP G2. Based on security

parameters between G1 and C1, G1 generates and inserts a zone authentica-

tor (A G1 C1) into the packet. As shown in Fig.3.c, the destination host ID

H ID dst and the remote zone ID Z ID B are also inserted into the packet to

ensure this packet is correctly routed to the host dst. Moreover, the source

host ID H ID src and the source Zone ID Z ID A are also inserted into the

packet in order to provide sufficient routing information for return packets to

be routed back to host src when they return to G1.

We use BGP announcements to influence the routing tables in domain U such

that the above zone-secure packet from G1 to G2 is forwarded to Checkpoint
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C1. At C1, we first check the zone authenticator A G1 C1. If invalid, the

packet is dropped. Otherwise, we compute a domain authenticator A C1 C2

to replace A G1 C1, as shown in Fig.3.d. Similarly, we use BGP announce-

ments to direct packet routing between domain U and V such that the above

domain-secure packet is forwarded from Checkpoint C1 to Checkpoint C2

across regular IP networks in between. At C2, we first check the domain au-

thenticator of a packet using its remote SA Index SA U. If invalid, the packet

is dropped. Otherwise, we then generate a zone authenticator A C2 G2. As

shown in Fig.3.e, we replace A C1 C2 with A C2 G2 in the packet and for-

ward it to G2. Upon receiving the zone-secure packet, G2 first checks if its

zone authenticator is valid. If valid, G2 does a reverse SPT by translating the

packet into a host-secure packet as shown in Fig.3.f; otherwise, G2 drops the

packet. Furthermore, G2 looks up its SH database to check if it needs to in-

sert a new entry in the database because it needs to remember how to route a

return packet from Host dst to Host src. When the host-secure packet arrives

at host dst, the secure IP layer recognizes it as a secure packet based on the

protocol field in its IP header. It first translates the host-secure packet into

a regular IP packet, and then puts this new packet into the IP input queue.

Consequently, an application at Host dst receives a regular IP packet as shown

in Fig.3.g.

To be practical, we must address the issue of fast packet authentication, trans-

lation and forwarding as well as the scalability of SGs in supporting a large

number of hosts. In Section 4.2, we evaluate the performance through our

prototype on Linux and present the detailed costs of these components. In

addition, we present fast SH lookup mechanisms in Section 5.

4.2 Prototype and Experimental Evaluation

We have implemented the prototypes of sIP layer, SG and SC in Linux kernel

2.4.20 using Linux Netfilter for evaluating SNS authenticated packet forward-

ing. We refer readers to [15] for the details of the implementation and present

the performance results in the following.
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Table 1
Delays of MAC Generation (in clock cycles)

With precomputed Without precomputed

key schedules key schedules

Blowfish-cbc-mac 2328 129342

Aes-cbc-mac 2738 12708

Hmac-md5 - 3812

Hmac-sha1 - 8368

We insert a 32-byte packet authenticator (as shown in Fig.7) at the end of each

SNS packet. The first four bytes are used for control bits, in which bit 0 to 3

indicates the version of SNS protocol, bit 4 to 7 represents the key management

protocol, bit 8 to 11 is used for choosing different Message Authentication Code

(MAC) generation functions, bit 12 to 14 indicates the direction of the packet

(from a host to an SG, from an SG to an SC, from an SC to an SG, or from

an SG to a host), bit 15 to 22 is a copy of the protocol field of an original IP

packet, and the rest of bits are reserved for future use. The next eight bytes

are related to the source host, including a four-byte source SA index, a two-

byte source zone identifier, and a two-byte source host identifier. Similarly, the

following eight bytes are related to the destination host, including a destination

SA index, a destination zone identifier, and a destination host identifier. The

next four-byte is a random number for preventing packet replay attacks. The

last eight-byte is the MAC value of this packet, which is generated using a

MAC generation function.

Figure 8 shows the flow chart of the sIP layer. When an sIP layer intercepts

a regular IP packet at the LOCAL OUT hook of Netfilter, it identifies the

packet as a secure packet if the destination address is a Class E address. (We
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Table 2

Delays of Forwarding Components (in clock cycles)

Authenticator MAC Secure Packet MAC Total Effective

Initialization Check Translation Generation Bandwidth

sIP 3067 - - 3812 6879 (3.44 µs) 291 MB

SG - 4463 450 3587 8500 (3.40 µs) 329 MB

SC - 4455 - 3869 8324 (3.33 µs) 337 MB

choose Class E addresses as SHs in our testing for outgoing packets.) If it is,

the sIP layer translates the packet into a host-secure packet. In the translation,

the sIP layer first allocates 32-byte space for an authenticator from the tail

room of an sk buff using Linux sk buff management function skb put(). Then

the sIP layer copies the destination address of the IP packet into byte 17

to 20 in the newly allocated 32-byte authenticator. i.e., the destination zone

identifier and the destination host identifier fields. The sIP layer also replaces

the destination IP address of the packet with the IP address of an SG. The

source zone identifier and source host identifier field are filled with the zone

identifier and the host identifier. The sIP layer further copies the protocol field

in the IP header into the protocol field of the authenticator and updates the

protocol field of the IP header to 135. (We use 135 as the SNS protocol number

in our testing for incoming secure packets.) A 32-bit random number is also

added into the authenticator. After the sIP layer initializes the authenticator,

it generates a MAC using hmac-md5 (RFC2085) and its host key.

Using the time stamp counter (TSC) of Pentium CPUs to directly read CPU

clock cycles, we are able to measure the delay at each step of our implemen-

tation in clock cycles. We first measured the delay of four MAC generation

functions using public-available codes from NIST, OpenSSL and IETF. As

shown in Table 1, Hmac-md5 performs the best in both delay and memory.

It takes 3812 clock cycles (1.91µs) to generate a MAC for a 24-byte SNS au-

thenticator, and it requires 1MB memory for holding 65536 keys. Meanwhile,

if given preprocessed key schedules,Blowfish-cbc-mac and AES-cbc-mac take

fewer cycles than hmac-md5 and hmac-sha1 in the MAC generation. However,

Blowfish requires 1042 32-bit sub-keys and AES requires 44 32-bit sub-keys

for each master key. To generate a key schedule takes 127014 clock cycles
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for Blowfish and 9925 clock cycles for AES. These heavy costs make the two

approaches impractical for the MAC generation. In addition, if we use prepro-

cessed key schedules for Blowfish and AES, their memory requirements are

rather high because we need maintain many keys on SGs and SCs. For exam-

ple, if we need 65536 keys at an SG, using blowfish requires more than 133MB

memory to store sub-keys, while using AES needs more than 11MB memory

for sub-keys. Therefore, we choose hmac-md5 in the our implementation.

We present the additional delays caused by SNS components for authenticated

packet forwarding in Table 2. We performed a stress test of sIP layer by sending

a large number of UDP packets of 1024 bytes over a direct link between two

hosts. In the first row, we show the measured average delays of authenticator

initialization and MAC generation for a packet at a source host. The average

delay of a packet caused by the sIP layer is 6879 cycles (3.44µs). In addition,

we also measured the effect of sIP on end-to-end bandwidth using Iperf from

NLANR (www.nlanr.net). On a 100Mbps dedicated link, we achieve a raw

transmission rate of 93.9 Mbps over regular IP and a raw transmission rate

of 91.9Mbps over sIP, 98% of the rate using IP. Furthermore, we performed

a similar stress test of an SG and measured the average delays of packet

authentication, secure packet translation, and MAC generation, as shown in

the second row of Table 2. We connect host H1 to H2 through H3, which

acts as an SG, as shown in Figure 9. The average delay of a packet caused

by an SG is about 3.40 µs. Moreover, we performed a similar test in which

H3 acts as an SC. The results are also shown in the third row of Table 2.
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The average delay of a packet caused by an SC is about 3.33 µs. In summary,

in a complete forwarding path from a source host to a destination host, the

total extra delay caused by SNS forwarding components (sIPs, SGs and SCs)

is about 20.34 µs. In the meantime, the last column in Table 2 also shows

that our prototype can support a forwarding rate around 300 MBps, which

is sufficient for a LAN environment with a 100Mbps or 1Gbps link. These

experimental measurements on our prototype implementation have shown the

feasibility of constructing SNS using regular PCs for common LANs.

5 Dynamic Table Management at an SG

The SH lookup mechanism of an SG is critical to its performance and scala-

bility because it needs to lookup an SH for each packet from a potential large

address table. Therefore, we focus on this issue in this section.

5.1 Table Operations and Requirements

In the process of secure name translation at an SG, we need to authenticate

and translate an incoming secure packet based on its address pair (IP G, ID H)

or an outgoing packet based on its SH, where IP G is the 32-bit IP address

of a remote security gateway and ID H is a 16-bit remote host ID. To ensure

the correct mapping in both incoming and outgoing directions, we need both

an SH and a (IP G, ID H) pair of the same flow to point to the same entry

in the address table. Different from traditional dynamic table mechanisms,

which only access tables through a primary key, we need to use both a pair

of (IP G, ID H) and an SH to access an address entry. For a packet from a

remote domain, we need to use its (IP G, ID H) as a primary key to find (or

insert) its forwarding information into the address table, and then return an

SH as the source IP address of a secure packet. As a result, when a local host

sends a packet back to the remote host, it uses this SH as the destination

address. When this return packet arrives at an SG, the SG directly accesses

the corresponding address entry based on the SH. As a result, we are able to

hide the (IP G, ID H) pair from a local host. Because we need to use both a

primary key and an SH to access the same dynamic table, we cannot directly
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apply existing dynamic table management schemes such as linear hashing.

Therefore, we design a two-layer data structure to address this issue. At the

lower layer, we use an Address Entry Pool consisting of address entries, which

allows us directly to access address entries using its indexes as SH’s. At the

upper layer, we build a dynamic directory for fast lookups based on a primary

key, i.e., (IP G, ID H) pair. For an insertion, we use a primary key to insert

an address entry in the address table and return an index of the entry pool as

a direct access handle (i.e., SH). For a lookup, we can either search the table

based on a pair of (IP G, ID H) or directly access an address entry using an

SH.

For fast lookups based on (IP G, ID H) pairs, we design a multi-level direc-

tory scheme and a single-level directory scheme described in the following. The

corresponding structure of entry pools is shown in Figure 10. The multi-level

directory scheme is shown in Figure 10.a, where each directory entry is corre-

sponding to a unique address table entry. The single-level directory scheme is

shown in Figure 10.b, where each directory entry is corresponding to a linked-

list of table entries. In this scheme we need to compare primary keys to check

if an entry is on the list.

The basic operations on the address table are insertion, lookup, and deletion.

We focus on fast insertion/lookups in this paper. We have designed an efficient

scheme to delete/recycle expired entries, which is presented in [14], due to the

space limit of this paper. We have two types of insertions. In an SNS Insertion,

a local host queries an SNS server for the address of a remote host. The SNS

server performs a secure name resolution for this query, passes the (IP G,

ID H) pair to a local SG, demands the SG to insert an address entry into the

table for the (IP G, ID H) pair, and returns an SH to the local host, such

that packets from the host will be forwarded correctly. In a Routing Insertion

for an incoming connection, an SG inserts an address entry into the table and

translates the incoming (IP G, ID H) pair into an SH, for setting up a correct

reverse forwarding path. We also have two types of lookups. In an SH-Direct

22



Lookup, an SG needs to translate a packet from a local zone into a packet to a

remote zone, and it uses the SH carried in the packet header to directly retrieve

an address entry. In a Routing Lookup for an existing incoming connection, an

SG already has a table entry with a corresponding SH. When a packet from

the same remote host with the same (IP G, ID H) pair arrives, the SG finds

the existing SH corresponding to the (IP G, ID H) pair, and uses this SH for

packet forwarding between a local host and itself.

5.2 Dynamic Directory Schemes and Their Performance

We design two dynamic-directory schemes to achieve fast lookups and inser-

tions. We first propose a Multi-Level Directory Scheme. Let us denote a 48-bit

primary key, a (IP G, ID H) pair, as k47k46 · · ·k0. At the first level, we use the

first 16 bits, k47k46 · · ·k32, as the index. We use the next 8-bit k31k30 · · ·k24

as the index of the second-level directory. Similarly, at level three, four and

five, we use corresponding 8 bits as the index of subdirectories. Each directory

entry consists of a flag F and a 32-bit pointer. F = 0 means that the directory

entry is empty. While F = 1 means that the first 16 bits of a key is unique in

the table, and the pointer field contains an SH, a direct index of the address

pool. F = 2 means that multiple keys have the same first 16 bits, and the

pointer field is refer to a sub-directory.

We also design a Single-Level Hashing Scheme to reduce potential delays and

memory cost in the above scheme, because the total number of hosts is as-

sumed to be smaller than 232 and using 48 bits as a primary key may result

in an uneven directory tree, which causes unnecessary delays in operations.

In this scheme, we need to search through a list by comparing the primary

keys of a list to find an SH, because we allow collisions on a table entry. We

use hash value v to find the header of a list, where v = H1(IP G, ID H), and

hash function H1 is implemented using Knuth’s multiplication method [16],

which can be computed in less than 100 clock cycles on Pentium-4 using C

in Linux kernel. We extend the standard linear hashing scheme as a directory

scheme to look up SH’s. We start with a directory with 216 entries, and then

double the directory size as the table population grows.
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1. if (entry e is empty)

2. INSERT(i); // insert client i into entry e

3. return a secure handle;

4. else

5. if (exact one client is in entry e)

6. if (i is the same as the client in entry e)

7. return a secure handle;

8. else // collision

9. EXPAND(); // expand a next-level directory

10. INSERT(i); INSERT(i’); // insert both into the next level

11. return a secure handle;

12. else // at least two clients are in entry e

13. step down into the next level directory.

Fig. 11. Lookup Algorithm of Multi-Level

Directory

1. if Hi(key) ≥ p

2. index = Hi(key);

3. else

4. index = Hi+1 (key)

5. access the entry at the index;

6. search through a overflow list if necessary;

Fig. 12. Lookup Algorithm using Linear

Hashing.

We analyze the performance of the above directory schemes in the following.

Let us first define the traffic model used in evaluation. Assume we have N

clients, each has an on-period T on
i seconds with a rate of ri packets/sec, and

an off-period T off
i seconds, where 1 ≤ i ≤ N . Then the average number of

active flows generated by clients will be Nactive =
∑N

i=1
T on

i

(T on
i

+T
off
i

)
· N .

For a packet j, the probability that it belongs to an existing flow i is P [j ∈

flow i] = ri∑Nactive
k=1

rk

. We assume that an address entry is expired after each

on-period. Then we need to insert an address entry for a flow in each on-

off cycle. The probability that packet j causes a table insertion for flow i

is P [j causes an insertion] = 1
T on

i
·ri

. Therefore, for packet j, the proba-

bility that it causes an insertion for flow i is P
(i)
insert = P [j ∈ flow i] ·

P [j causes an insertion].

We first analyze the performance of the multi-level directory scheme under

the above traffic model. Figure 11 shows the lookup algorithm that decides

the action for a packet of flow i, whose address is fallen into directory entry

e. Consider level l directory with 2k entries, where k = 16 when l = 1, and

k = 8, when 2 ≤ l ≤ 5. Let Nl be the current flow population in level l and its

sub-directories. We know N1 = Nactive. Assume client addresses are uniformly

distributed across the whole directory, the expected population in the level l

is Nl = N1

216+8·(l−2) , 2 ≤ l ≤ 5.
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Assume packet j arrived at directory level l is fallen into an entry e with a

uniform probability of 1
2k . Let pl

0 = P l[e = 0] be the probability that entry e

is not occupied currently (i.e., flag F = 0); pl
1 = P l[e = 1] is the probability

that entry e is currently occupied by a single flow (i.e., flag F = 1), and

pl
2 = P l[e = 2] is the probability that entry e is currently occupied by more

than one flow (i.e., flag F = 2), and thus it is expanded into the next level

l + 1 (for l < 5). Then we have pl
0 = (1 − 1

2k )Nl, pl
1 = (1 − 1

2k )Nl−1 · 1
2k , and

pl
2 = 1 − pl

0 − pl
1. Because of no collisions in the fifth level, we have p5

0 = 1,

p5
1 = 0, and p5

2 = 0. Therefore, the expected delay of inserting a new entry

into a directory at level l and its sub-directories, denoted by Dl
insert, is given

recursively by Equation 1.

Dl
insert = dflag + pl

0 · dinsert + pl
1[dcompare + dexpand

+El+1
insert(i, i

′)] + pl
2[ddown + Dl+1

insert] (1)

where dflag is the delay to determine the flag value of a directory entry, dinsert

is the delay to insert client information into an entry, dcompare is the delay to

compare the destination of a packet with that of an existing entry, dexpand is

the delay to expand a sub-directory in the next level, ddown is the delay to

step down into the next-level sub-directory, and E l+1
insert(i, i

′) is the delay to

insert two distinct entries, i and i′, into a newly-expanded sub-directory at

level l + 1, as defined in Equation 2.

El
insert(i, i

′) =
1

216+8·(l−1)
El+1

insert(i, i
′) +(1 −

1

216+8·(l−1)
) · 2 · dinsert (2)

where 2 ≤ l ≤ 4. For E5
insert(i, i

′) = 2 · dinsert because no collision occurs

at the fifth level. The expected delay of searching an entry at level l and its

sub-directories, denoted by Dl
lookup, is given recursively by Equation 3.

Dl
lookup = dflag + pl

1 · dcompare + pl
2[ddown + Dl+1

lookup] (3)

In summary, for the packets of flow i, the expected delay of an address insertion

is D1
insert, and the expected delay of an address lookup is D1

lookup. Then the

expected delay of a directory lookup/insertion is thus:

D(i) = P
(i)
insert · D

1
insert + (1 − P

(i)
insert)D

1
lookup (4)
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Now let us analyze the expected memory cost in the multi-level directory

scheme. First, we always allocate the top level directory with 216 entries. Then,

for each collision on an entry, we allocate a sub-directory of 28 entries. For

each flow i, it may cause an expansion of a sub-directory at level l + 1 if

it is collided with another address entry at level l (i.e., when flag F = 1),

1 ≤ l ≤ 4. The probability that flow i is collided with another entry at level l

is m(i, l) = (
∏l−1

k=1 pk
2) · p

l
1. Therefore, the potential memory cost due to flow i

is mi =
∑4

l=1 m(i, l). The potential memory cost of N1 flows is denoted as M ,

where M =
∑N1

i=1 mi.

We now analyze the performance of the linear hashing directory scheme. As-

sume we initialize the directory with Ñ0 entries, say Ñ0 = 28. Assume we have

a perfect hashing function, then the memory cost of the single-level directory

for a population of N1 is denoted as MN1 = Ñ0 · 2
k, where k = blog2N1/Ñ0c,

such that 2k−1 ·Ñ0 ≤ N1 ≤ 2k ·Ñ0. We only expand the directory after 2k−1 ·Ñ0

collisions.

For each packet, we need to first search the table to check if it has a corre-

sponding entry there. If not, we then insert an address entry. The probability

that the address of the packet is hashed into an empty directory entry is

p0 = P [X = 0] = (1 − 1
2k )N1 , while the probability that its address is hashed

into an occupied directory entry is p1 = 1− p0. The search procedure of linear

hashing is shown in Figure 12.

Dlookup = dhash + dp + Dlist (5)

where dhash is the delay of computing the hashing function, dp is the delay to

compare with a splitting pointer p, and Dlist is the expected delay of searching

through the overflow list. For a good hashing function, we assume that the

average length of the list is less than two. As a result, the upper bound of the

delay of searching the list is Dlist ≤ 1.5 · dcompare + 0.5 · dnext, where dcompare

is the delay to compare the address of the packet with the address in a name

entry, and dnext is the delay to access the next entry on a list. We then have

Dinsert = p0 · dinsert + p1 · (dhash + dp + Dlist + dinsert) (6)
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Fig. 13. Comparison of Delay and Memory Cost with Models.
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Fig. 14. Comparison of Delay and Memory Cost using Simulations.

And the expected lookup/insertion delay of packets of flow i is

D(i) = P
(i)
insert · Dinsert + (1 − P

(i)
insert) · Dlookup (7)

We measure the delay of memory read/write and hashing computation in

Linux kernel and plug in these parameters into our models. Fig.13 shows the

comparison of the multi-level approach with a perfect linear hashing approach.

For a uniform distribution of addresses, although the multi-level approach does

well for a small population, its delay grows as the population increases. We

also test the multi-level approach with a skewed input, in which all address

entries are in a single directory entry at the first level and they are uniformly

distributed below the first level. In this case, the delay of multi-level approach

is increased significantly. While the linear hashing approach keeps a constant
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delay under the assumption of a perfect hashing function. In addition, the

memory cost of the hashing approach is less compared with the multi-level

approach, as shown in Fig.13.b. We also conduct simulations to evaluate the

two schemes. We use a multiplication approach for fast computing hash val-

ues, and generate a random set of address lookups. Fig.14.a shows the mean

delay of the hashing scheme is significantly better than the multi-level scheme.

Fig.14.b shows that the memory cost of the hashing scheme is also better than

the multi-level scheme.

6 Conclusion and Ongoing Work

We have proposed the SNS framework to protect critical resources from unau-

thorized accesses and DOS attacks. Through the resource virtualization and

dynamic name binding, we can build a distributed filtering scheme to en-

force packet authentication. We have described the basic design of the SNS

framework, the SNS naming schemes and the SNS authenticated packet for-

warding. We have further addressed the performance and scalability issues in

the authenticated packet forwarding. Based on our prototype on Linux, we

have shown the feasibility of implementing SNS on regular Linux machines.

We have also designed fast secure-handle schemes to address the scalability

issue in fast address translation.

To fully exploit the advantages of SNS, we still face several challenges such as

further improving service availability and scalability. For example, we need to

further protect SCs from attacks (such as packet replay and flooding) because

they are exposed to attackers. We will address this issue from two perspectives.

First, we will build a fast filter scheme on these SCs using Bloom Filter [17]

in order to stop attacking packets into SNS domains. The main tradeoff of

this scheme is between computation costs and probabilities that invalid pack-

ets penetrate the filter. Furthermore, we will investigate the effect of recon-

structing dynamic packet forwarding paths to defeat attacks through resources

within SNS domains and potential resources from a third party between SNS
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domains. Currently, we are working on these issues and implementing the

complete SNS framework for further investigation.
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