EE 361 Fall 2008 University of Hawaii

Verilog Introduction

G. Sasaki
10/5/08

1. Introduction

This is an introduction to verilog, which is a hardware description language (HDL) for digital circuits.
Section 2 describes how to design circuits in verilog. Section 3 has a brief overview of simulators and
test benching. An example of designing and debugging a circuit using veriwell is presented in Chapter
4.

2 Verilog
Verilog can be used to describe combinational and sequential circuits. Verilog code

e Can be used to simulate circuits using a simulator such as veriwell or Modelsim, or
e Can be converted into an actual hardware design using a synthesizer such as the one in Xilinx’s
Webpack.

In verilog, circuits can be defined as modules. A template of a module is shown in Figure 2.1. Stick to
this template to minimize mistakes. Later, when you gain more experience, you can use other styles
and conventions of writing verilog code.

The circuit modules are composed of combinational subcircuits, sequential subcircuits, or a mixture. In

Subsection 2.1 we describe combinational subcircuits, and in Subsection 2.2 we describe sequential
subcircuits.

2.1 Combinational circuits

A combinational circuit has a set of inputs (x1, x2, ..., Xk) and a set of outputs (y1, y2,..., ym). Each
output essentially behaves like the output from a mathematical function, e.g., y = f(x1, x2, ..., Xk). This
can be modeled within a verilog module by using a continuous assign or procedural always.

Continuous assign has the following form:

assign y = expression with terms for x1, x2, ..., XxK;

The variable y must be a wire variable (or an output port that behaves like a wire variable), and
“expression” is a mathematical expression, e.g., a boolean or arithmetic expression. (The expression
cannot have begin-end blocks, case statements, if-else statements or anything else. The variables x1,
X2, ..., Xk can be wire or reg variables.)

The operations are on values with the same number of bits. For example, suppose y is 3 bits (e.g., you
declared wire [2:0] y;) and variable X1 is a single bit. Then

assign y = X;

does not make sense because you are assigning a 1-bit value into a 3-bit variable.

// Module and port list. Note that by convention the output ports
// come First, then clock iInputs and resets, then input ports.
module name_of module(output portl, clkl, input portl, input port2,...);

// List of ports. Note that the ports act as wires, but you can make
// an output port be a reg variable by declaring it so.

input in_portl;

input in_port2;

input clkl; // clock input

output out_portl;

// Declare wire and reg variables
wire [3:0] x;
reg y;

// Note that the declaration of port type and variables are
// done at the top of the module. The rest of the module defines

// how the circuit behaves. This iIs done by the "assign', "always",
// and module instantiations. These can be listed in any order
/[
// Continuous assign: left side of "=" is a wire var. Right

// side is a boolean or arithmetic expression.
assign x = x + ({vy,Y,Y.Y} & 3); // Note that the processing is on 4-bits

// Procedural always for combinational circuits. All assignments
// should be blocking (*'=")
always @(variablel or variable2 or variable3l)

begin

case statements

blocking assignments

if-else

end

// Procedural always for sequential circuits. All assignments
// should be nonblocking (''<=")
always @(posedge clkl)

begin

case statements

nonblocking statements

if-else

end

// Modulle instantiations. These are for modules "Circuitl”

// and "Circuit2”. Note that wire variables are used to connect
// the instantiations with other things.

Circuitl name_of instance(wire_varl, wire_ var2,...);

Circuit2 name_of _instance2(wire_varx, wire vary,...);

endmodule

Figure 2.1. Verilog module template.

Continuous assignment statements are limited to modeling simple circuits. Often they are just used to
connect one variable to another, e.g.,

assign y = x;

Procedural-always statements can model any combinational circuit, so they are used more often. A
procedural-always has the following form:

always @(x1 or x2 or ... or xk)

A description of how the output variable y is updated
whenever the inputs change. In other words, it describes
y = f(x1,x2,....,xk)

The basic form is to have all the inputs listed in the sensitivity list, e.g., “X1 or X2 or ... or
XKk”. Whenever one or more of the input values change, the output values are updated. In this case, the
output is y. The output variables are always reg variables.

The following are two examples.

always @(x1 or x2) vy = x1 + x2;

always @(x1 or x2 or select)

case(select)
0: vy =x1 + x2;
1: y = x1 — x2;
endcase

In many cases, more than one line will be needed to describe how the output y is updated. To group
multiple lines into a single entity, you can bind them into a begin-end block. This is similar to curly
brackets "{ }" used in the C programming language.

always @(x1 or x2 or x3)
begin
if (x1 >= 0) choice = x1 + 3;
else choice = x2;
case (choice)
0: y = x2 + x3;
1: y = X2 — X3;
endcase
end

The begin-end block explains how the new value of output y is determined. Note that we have a
variable “choice” that is not an input or output. We will discuss this variable later. Also note that in
procedural always, all variables that are updated must be reg variables.

It is assumed that within the begin-end block, the lines are “executed” starting from the top and proceed
downwards. Thus, it is interpreted as if it were part of a C program. For the example, to determine the
new value of y, start with the if-else. Then continue by considering the case-statement.

3

Your procedural-always should lead to the truth table for the subcircuit. Consider the next example
(assume all the variables are 1-bit):

always @(x1 or x2 or s)

begin

if (s==1) h =0;

else h = 1;

case(h)
0: vy
1: vy

endcase

end

x1|x2; // AND the inputs
x1&x2; // OR the inputs

This procedural-always describes a combinational circuit that has a select input “s”. If s = 1 then the
output y = x1 | x2. Otherwise, y = x1 & x2. This leads to the following truth table:

Input Output

s x1 x2 y
0 0 O

0 0 1 1
0 1 0 1
0 1 1 1
1 0 O 0
1 0 1 0
1 1 0 0
1 1 1 1

If you cannot generate a truth table then obviously the procedural-always does not describe a
combinational circuit.

Here are some rules in regards to writing a procedural-always:

Rule 1. Variables on the left side of an equality “=" must be reg variables. For example, the variable
“t”intheline “t = x1 + x2;” must be areg variable. In other words, procedural always update reg
variables only.

Rule 2. There are three kinds of variables. There are input variables such as x1, x2, and s; and there
are output variables such as y. There can be other variables that are not inputs or outputs, e.g., in the
examples above, “choice” and “h” are not inputs or outputs. They are used to store intermediate
values as we proceed to determine the output values. You can think of them as “wires” that are internal
to the subcircuit. We will refer to them as “intermediate variables”. These variables should be reg
variables too.

As much as possible, in a procedural-always, “update” output and intermediate variables at most once.
For example, we want to avoid procedural-always such as the following:

always @(x1 or x2)
begin
y = X1 + x2;
if (y > 4) yv = x1;
else y = x2;

end

Here, the output variable y could get updated two times, at y = x1+x2 and at y = x1. If these variables
represent “wires” then it doesn’t make sense to have them change values twice each time the inputs
change. A better implementation is as follows:

always @(x1 or x2)
begin
r = X1 + X2;
if (r > 4) v = x1;
else y = x2
end

Then both r and y are updated once (y is updated as either y = x1 or y = x2, but is never updated twice).

Rule 3. Within a begin-end block, you can have ordinary assignments (e.g., “y = x1+x2;), if-else
statements, and case statements.

A common mistake is to interpret modules as “C functions”. Modules are really descriptions of circuits.
Thus, any instantiations of a module is just implying that a circuit should be placed there. On the other
hand, for a procedural-always, the begin-end block is an explanation of how an output value is
computed. In this way, it is describing a truth table. Hence, it doesn’t make sense to instantiate a circuit
module within a procedural-always.

2.2 Sequential circuits

A sequential circuit has a clock input, data inputs, and outputs. It also has a “state” which is stored in a
“state register”. Note that the state register can be as simple as a few D flip flops or as complicated and
large as a combination of RAM, register files, and counters. When designing a verilog subcircuit, the
state register is represented by a reg variable. The following is an example of a procedural-always that
implements a sequential subcircuit

always @ (posedge clock) g <= d;

The variable “clock” is the clock input. The procedural-always will update whenever “clock” has a
positive edge. The update is “q <= d”. Here, “q” is the state register that has its value updated by input
“d”. This example is for a D flip flop. Notice that instead of “=" we use “<=". The assignment “=" is
called a blocking assignment, and “<="is called a nonblocking assignment. These will be explained a

little later.

Consider the next example for a T flip flop.

always @ (posedge clock)
begin
if (t==1) g <= ~q;
end

The example shows that we can use begin-end blocks and if-else. You can also use case statements.
Basically, a procedural-always for a sequential circuit has the following form.

5

always @ (posedge clock)

Update state registers using nonblocking
assignments “<="",

Note that when updating the state registers, we want to update all the registers at once, i.e., all their D
flip flops get updated on the positive clock edge. This models the way real sequential circuits work. To
get this effect, nonblocking assignments are used. Next is an explanation of the difference between
blocking and nonblocking assignments.

In the case of nonblocking assignments ("<="), all the assignments are activated at once. It is
"nonblocking” because the statements are executed simultaneously. Consider the following example
with D flip flops labeled A, B, and C.

A B C
0— ™D Q »D Q » D Q—»
clock clock clock
clock A A A

When the positive edge of the clock occurs, all D flops are updated. The following procedural-always
models this

always @ (posedge clock)

begin
A <= 0;
B <= A;
C <= B;
end

Again, all of the updates are done simultaneously. For example, suppose initially A=1,B=0,and C =
1. Then after the positive clock edge, A=0, B =1, and C =0, such as shown below.

A B C A B C
o— b o0 o0 o} o—b ol—>p oP—b o>
clock clock clock clock clock clock
clock A 4 4 clock A A 4
Before clock edge After clock edge

Blocking assignments (“=") are different which is illustrated in the next example.

always @ (posedge clock)
begin
A = 0;

A;

B;

In this case, when there is a positive clock edge, each line is activated one at a time. In other words, “A
= 0” is updated, then “B = A” is updated and finally “C = B” is updated. Note that the line “A = 0”
essentially “blocks” the assignments below it. In other words, line “A = 0” must be updated before we

6

consider “B = A” and “C = B”. In turn, line “B = A” blocks “C = B”. This is not how a sequential
circuit behaves.

Let us take a look at the two examples below of updating our D flip flops. Assume initially that (A,B,C)
= (1,1,1). If the assignments are nonblocking then, after the positive clock edge, we have (A,B,C) =
(0,1,1). This is what we want since all the D flip flops should be updated together. On the other hand if
the assignments are blocking then, after the positive clock edge, we have (A,B,C) = (0,0,0).

begin begin
A <= 0; A = 0;
B <= A; B = A;
C <= B; C = B;
end end

The following are some rules to design sequential subcircuits using procedural always.

Rule 1. Always use nonblocking assignments “<=" and never use blocking assignments “=",

Comment: Procedural always can be used to model combinational circuits or sequential circuits. In the
case of combinational circuits, always use blocking assignments “=". In the case of sequential circuits,
always use nonblocking assignments “<=". Never mix the two in a procedural-always.

Rule 2. State registers are reg variables.

Rule 3. There are three types of variables: clock variable, input data variables, and state variables. Your
output should equal the state, so there is no need for output variables. The clock variable should appear
only once within “always @(posedge clock)”. For each nonblocking assignment, the left hand side
should be a state variable.

Rule 4. Each state variable should be updated at most once.

Rule 5. You can use if-else and case statements.

For the rest of this section we will give an example of a sequential circuit. It is a 2 bit counter with a

two bit select “s”. If s = 0 then the counter resets to 0. If s = 1 then the counter counts up, and if s = 2
then the counter counts down. If s = 3 then the counter holds its value.

module counter2(q,clock, s) ;
out [1:0] g; // 2-bit output
in clock;

S [1:0] s; // Select input

reg [1:0] g; // This is our state variable

always @ (posedge clock)

begin
case (s)
0: g<=0;
1: g<=g+l; // Counting up. Note that the count wraps around
// when it goes past the value 3
2: g<=gq-1; // Counting down. Also has wrap around
3: g<=q; // Hold
endcase // Actually, the begin-end is unnecessary
end
endmodule

Suppose we want to modify the counter so that it counts in the Gray code (which is used in K maps).
Recall that the Gray code is 00, 01, 11, 10, rather than 00, 01, 10, 11.

We can modify counter2 by having it output differently. When counting up, the new counter should
count 00, 01, 11, 10, 00...., and when counting down, it should count 00, 10, 11, 01, 00.... Instead of
having the output value be the same as the state of counter2, have it be different values but dependent on
the state. In particular, if the state = 2, the output should be 11, and if the state = 3, the output should be
10. We build a separate combinational subcircuit using another procedural-always.

module counterGray(y,clock, s) ;

out [1:0] y; // 2-bit output

in clock;

S [1:0] s; // Select input

reg [1:0] g; // This is our state variable

always @ (posedge clock) // This is the same as before

begin
case (s)
0: g<=0;

1: g<=g+l; // Counting up.
2: g<=g-1; // Counting down.
3: g<=q; // Hold

endcase // Actually, the begin-end is unnecessary
end
// This is added to output the Gray code. It’s a combinational circuit,
// with the state being the input, and y being the output.
always @(q)
case (q)
0 y = 0;
1 y = 1;
2 y = 3; // which is 11 in binary
3: y = 2; // which is 10 in binary
endcase
endmodule

2.3. Bucknell Verilog Handbook

In the following table is a list of sections to review in the Bucknell Verilog Handbook. (Note that the
Bucknell Verilog Handbook is a bit confusing because it explains verilog in the context of both circuit

design and simulation and mixes them together. Actually, verilog used to design circuits is a little
different than verilog used for simulation.)

Section

Comments

2.2. Lexical conventions

It explains basic syntax including how to specify constants in
binary, hexadecimal, etc.

2.3. Program structure

It explains the basic structure of modules.

2.4. Data types, but skip
Subsection 2.4.2.

It explains variables, variables that are arrays of bits (e.g., reg
[7:0] A;), the concatenation operation (e.g., "{x, y, z}'), and the
repetition operation. These help in writing concise modules.

2.5 Operators.

The operators are similar to C language operators. Note that the
shifting operations are "<<" and ">>",

2.6 Control Constructs but
skip Subsection 2.6.2.

It explains if and case statements.

2.7 Other statements but skip
Subsections 2.7.1.

It explains continuous assignment, blocking, and nonblocking
assignments.

3 Simulation and Testbenches

After you build modules, you'd like to test them using a verilog simulator such as veriwell. The
software tool veriwell is known as a discrete time simulator. It will simulate a circuit (specified in
verilog) over a time period starting from time 0. The simulator will divide time into time units or time
steps. You can think of each unit as the "tick" of some clock. Each time unit corresponds to some small
duration such as 1 nanosecond or 0.1 nanoseconds.

To run a simulator, you first initialize it so that it starts from time 0. The simulator keeps track of the
time by a variable, and in the case of veriwell the variable is $time. When the simulator runs a
simulation, it computes what the wire and register values should be as time goes on. In particular, it
determines what the variables should be at time 1 based upon what the variables were at time 0. Then it
determines what the variables should be at time 2 based upon the variables are at time 1. It continues in
this way until it reaches some stopping time. In the case of veriwell, $stop determines the stopping
time.

What can you do with the simulator? You can test your verilog modules as if you were testing a real
hardware circuit such as an IC chip. Figure 3.1 shows a set-up to test the IC chip. The chip is on a
protoboard. Its outputs are connected to probes, which are LEDs. A clock generator is connected to the
clock input. The other inputs are connected to wires that can be set to 5v and Gnd. To check whether
the chip works or not, we can set the input wires to different voltages and observe the probes. If the
outputs are what we expect then the chip works. This set-up is a test bench.

Protoboard —— M.
5v Gnd ICChip /
Clock
e :I/—\O Generator
—~] P e.
— 1 O ~ LEDs
TN (probes)

Fiaure 3.1. A testbench

We can also test bench our verilog modules. The following are verilog statements that are useful for test
benching. Look these up in the Bucknell Verilog Handbook and read the descriptions.

Verilog Statements | What are they used for

initial This statement is used to initialize variables for simulation. However, with
delays, this statement can be used to generate input signals that change over
time.

#n This inserts a delay of n time units. This is used in combination with
initial to create input signals for your test bench.

$display This is used to display variable values, like probes. This is similar to
printf in the C language.

$monitor This is also used to display variable values, like probes. This is similar to
$display but it can occur only once in the verilog code. This can occur
only once in your verilog code, while $display can occur many times.

10

Figure 3.2 is a test bench for a module called icChip which is a sequential circuit. The test bench is used
for simulations only. You do not synthesize a test bench because it is not a circuit.

// Note that the test bench module is similar to main() in C programs.
// 1t has no ports. Also note the test bench can

// have any name, and in this case it"s called "testbench”

module testbench;

// We need variables to connect to inputs and outputs of icChip.

// Note that signals to the inputs of icChip must be from reg variables.
// The outputs from icChip are connected to

// wire variables.

reg clock;

reg [1:0] A;

reg [2:0] B;

wire [2:0] C;

// The following is the instantiation of icChip. Note
// that the wire and reg variables are connected to it.
icChip ci1(A,B,C,clock);

// The following is the clock generator. It"s initialized
// to 0 and then it toggles every time unit. Thus, the
// clock period is 2 time units.

initial clock = 0;

always #1 clock = ~clock;

// The following shows how to set inputs to different
// values over time. Note that the assignments are blocking
// so that they are executed in sequence.

initial
begin: Input values for testing
A = 0;
B = 0;
#2 A = 1; // After 2 time units, A is changed to 1.
#1
B = 3; // After another time unit, B changes to 3.
#2 $Finish; // After 2 more time units, the simulation
// stops.
end

// The following displays the outputs.
initial
begin: Display
// The following is displayed once at time 0 of the
// simulation.
$display("A B C clock time™);
// The following will display whenever one of the
// variables changes values.
$monitor(""%d %b %d %b %d",A,B,C,clock,$time);
// Note that $monitor can occur at most once in verilog code
// while $display can occur many times. Note %d = display value
// in decimal, and %b = display value in binary.
end

endmodule

Figure 3.2. Example of a test bench.

4 Example

Creating and testing a 2:1 multiplexer. Figure 4.1a shows the veriwell window at start up. We want to
create a module for the 2:1 multiplexer and store it in a file called "mux2to1.V" Notice that verilog files
should have the ".V" suffix. To begin, go to the file menu and select New. This creates a text file
Nonamel.v. Now, type in the module. A screen shot is shown in Figure 4.1b. Save it with the file
name "mux2tol.V". Create a testbench file and call it testbench_mux.V. Type in a testbench such as in
Figure 4.1.c.

Now that we have both the module and testbench, we can create a project. Go to the Project menu and
select New. Next, select Project menu again and "add "mux2tol.V" and "testbench_mux.V". After
adding the files, the window should look Figure 4.1d. Now you can simulate by going to Project menu
again and selecting Run. There was a compile error in "mux2tol.V" (colon following "begin™ on line 15
should be deleted). After fixing the error, the project was run again. It compiled successfully with two
"warnings"”. This is shown in Figure 4.1e. Then you can run the simulation by clicking the arrow
button shown in Figure 4.1e. Figure 4.1f shows the result of the simulation.

12

B YVenwell
File Edit Search Project ‘Window Help
O Yeriwell Console

e e = =

B= B

Click here
to expand
window

Wwhelcome to Veriw'ell

[Ln1. Col T [4zaM

Figure 4.1a. Veriwell console.

® Verwell - [Nonamel .¥] BE B
‘a File Edit Search Project ‘window Help — =] x|

<o d 2:1 multiplezer with output v, select =elect. and inputs inl and inl
module muxZtol(y.select.inl,.inl):

cutput [31:0] ¥

input select: ~ A& 1-bit wvariable
input [31:0] in0:

input [31:0] inl:

reg [31:0] w:

alwaysz @{=elect or inl or inl)
begin:
caze(select)
0: v = inl:
1: v = inl:
endcase
end

endnoduld

KN ||

Welcome ta Weriw/ell [Ln19, Cal 10 E7aM 2

Figure 4.1b. 2:1 multiplexer module, ""'mux2tol.V"

13

B Veriwell - [testbench_mux V] BEE B
_afile Edit Search Project 'Window Help _|ﬁ||1|
<4 Test bench for muzZtol.
mnodule test_bench _mu=xZtol:

reg [31:0] ind;
reg [31:0] inl:
reg select:
wire [31:0] ¥

< Instantiation of the nultiplezer.
murZtol mu=Aiy, select, inl. inl):

s« Testing different input walues
initial

begin

inl = 3:

inl = 15;

zelect = 0;

#1

zelect = 1;

<« Dizplaying wvariables
initial
begin
S$display({"time inl0 inl =el ¥"):
Smonitor{"¥d =d xd Hd ¥d".%time,inl.inl, select.y):

end
endmodule
41 |]|
welcome to Yeriwel | Ln 36, Cal 2 [Z148M 2
Figure 4.1c. "testbench_mux.V"
B Veriwell - [mux_Proj.prj] BE B
] File Edit Search Projsct ‘Window Help ==

If you click aline,
you open the file so
that you can edit it.

Halted 2248M 4

Figure 4.1d. Adding ""mux2tol.V" ang4"testbench_mux.V" to a project.

B Venwell - [Veriwell Console] BEB
File Edit Search Proect Window Help =1 |

B EEE R

;omuEZtol ¥

parse srror, expecting “IDEWTIFIER'

parse error

parse error

Compiling source {iNg : testbench mux .V

2 warnings in comnpilaWgjon

3 errors in compilatio

Veriwell -k A:~32-bit EoW§ing Table~VeriWell key -1 A;~32-bit Eouting Table~VeriWell.l:c
VerilWell: warning: Cannot Sgen log file 'A:~32-bit Fouting TablexWeriWell log'. proceec
VeriWell: warning: Cannot op key file 'A:~32-bit Routing Table~VeriWell key'. proceesc
VeriWlell for Winid2 HDL <Vlgzion 2.1.1: Fri Mow 15 02:29:13 2002

This iz a free verzion of the WgilWell for Wini2 Simulator
Distribute this freely; call 1-8W-VERIVELL for ordering information
See the file "lreadmne.lst" for morfydinformationd

Copyright (o) 1993-96 Wellspring Solu®ion Tr—

All rights reserved . .
After compiling, click

Memory Awailable: 0 here to run the
Entering Phase I... .
Compiling source file : muxZtol |V S|mu|at|0n_

Compiling source file : testbench_mnuz .V
The =zize of this mnodel i= [2%, 3%] of th

Entering Fhase II. ..

Entering Phase III...

2 warnings in compilation

Ho errors in compilation

Top-level modules:
test_bench muzitol

Cl:
4 »
Yw/aiting For Input [Ln 49, Cal 5 FET

Figure 4.1e. Running the project, which leads to "‘compiling™ the project.

B Verwell - [Veriwell Conzole] BE B
File Edit Search Project 'Window Help _Iﬁllil

EEEREREE

2 warning= in compilation -
3 errors in compilation

Veriwell -k A:~32-bit Routing TablexVeriWell key -1 A4:~32-bit Routing Table~VeriWell. lc
VeriWell: warning: Cannot open log file 'A:~32-bit Routing Table VeriWell. log', proceec
VeriWell: warning: Cannot open key file 'A:~32-bit Routing Table VeriWell key', procesc
VerilWell for Wind2 HDL <Version 2.1.1» Fri Hov 15 02:29:13 2002

This is a free wersion of the VeriWell for Win3i? Simulator
Distribute this freely:; call 1-800-VERIWELL for ordering information
See the file "lreadme.lst" for more informationld

Copyright (o) 1993-96 Wellspring Solution=. Inc.
41l rights reserved

Hemory Awvailable: 0

Entering FPha=e I...

Conpiling source file : muxZtol .V

Conpiling source file : testbench mux .V

The =size of this model is [2%, 3%] of the capacity of the free version

Entering Phass II...

Entering Phase III. ..

2 warnings in compilation

Ho errors in compilation

Top-level modules:
test_bench muxZtol

Cl:
time 1inl0 1inl ==l ¥

0 3 15 0 3

1 3 15 1 15

2 3 21 1 21

3 15 21 1 21
Stop at simulation time 6
[os YN | =
A 3
“wiaiting For Input [Ln5E, Col5 2348 4

Figure 4.1f. Running the simulation.

15

Notice that in Figure 4.1f, the output was not spaced nicely. The output should have looked like this

time in0 inl sel y
0 3 15 0 3
1 3 15 1 15
2 3 21 1 21
3 15 21 1 21

You can check that the output y is equal to the input (inO or inl) depending on the value of sel. Thus,
the multiplexer works for this test bench.

16

5 Summary
This is a quick summary of Verilog.
Verilog module

module <name>(outport0, outport2,..., clock, inport0, inportl, ...); // semicolon
output outportO;
output outportl;

input clock;
input inport0;
input inportl;

wire [n:0] wireName; // or wire or wire [0:n] wireName; Wire models connections
reg [n:0] regName; // or reg or reg [0:n] regName; Reg models registers and combinational circuits

/I Example instantiation of a circuit “otherModule”
otherModule <name>(connection0, connectionl, ...); // semicolon

assign <wire variable> = <expression>; // continuous assignments update wire variables. semicolon

Il continous always can be used to model sequential circuits. The state register is updated.
always @(posedge clock) // no semicolon
begin /I no semicolon
<reg variable> <= <Example: expression, case, if-else>; // Use nonblocking assignments
I/ semicolons after nonblocking assignments
// You can use begin-end blocks within begin-end blocks but be careful
end /I no semicolon

Il continuous always can be used to model combinational circuits
always @(x0 or x1 or x2...) // This is the sensitivity list. It should include all inputs to the circuit
/I Alternatively, the sensitivity list can be separated by commas
begin
<reg variable> = <Example: expression, case, if-else>; // Use blocking assignments
// semicolons after blocking assignments
// 'You can use begin-end blocks within begin-end blocks but be careful
end

endmodule // no semicolon

Data

17

Numbers are specified by <size><’base format><number>, where size is in numbers of bits; base is 0 =
octal, h = hexadecimal, b = binary, and default is decimal; and number is represented in the base. For
example, 5’hle (5-bit hexadecimal number Ox1e) and 4’b0110 (4-bit binary number 0110).

Operators

Binary operators: +, -, *, / %. These are the same binary operations in the C language

Bitwise operators: ~ (negation), & (and), | (or), ™ (exclusive or), ~&, ~|, etc

Unary (logic) reduction operators: &, |, *, ~&, ~|, ~*

Shifting: <<, >>(same as in C language, e.g., Y << 4 means shift the bits of Y by 4 bit positions

Concatenation: { , , } (Example, A ={X, Y, W} so bitarray Y has the value of the concatenation
of X, Y, and W)

Repetition: {3{ X, Y, W}, B,C }. Thisis the same as
XY, W, X, Y, W, X,Y,W, B, C}
This can be used for sign extension, e.g., {16{r[15]},r} is a sign extension of a 16
bit register r to a 32 bit sign extended value. Note that the sign bit r[15] is repeated
sixteen times.

Procedural always
This usually has a begin-end block, and the following statements can be used within the block.

if () // Similar to if-else of C language. Within parentheses use relations such as “x ==y”,
elseif () // “x<y”, etc. No semicolons unless there is a blocking or nonblocking assignment
else /I on the same line

case(<signal name>) // no semicolon
<value0>: <statement> // if the statement is an assignment then there is a semicolon
<valuel>: <statement>
<value2>: <statement>
default: <statement>
endcase // no semicolon

parameter <name> = <value> // This is similar to CONST in C Language. It assigns
/I a value to a symbol name. Example:

parameter bus_length = 32;

reg [bus_length-1:0] a0; // declares a 32-bit register a0

There are other statements but these will do for most homeworks and projects.

18

Test Bench

An example test bench is shown in Figure 3.2. It declares register variables that are used to generate
signals including the clock. It declares wire variables to probe the outputs of circuits. A clock signal is
implemented this way:

initial clock = 0;
always clock = ~clock; // for a period of 2
Other input signals are generated using the initial procedure. For example,

initial
begin
<initialze register variables, e.g., to 0>
<delay in time units> // a delay can be by itself on its own line.
<update signal as a blocking assignment>; // semicolon
<delay in time units> <update signal as blocking assignment>; // semicolon
$finish; // semicolon
end

You also need an initial procedure(s) to display results. You can use the $monitor and $display
operations. $monitor is used just once in your verilog code. It outputs to the screen every time a
variable in its variable list changes values. The format of monitor and display is similar to printf. For
example,

$monitor("%d %b %d %b %d",A,B,C,clock,$time);

Note that there is no “\n” since there is no need for a “new line”. %d = display in decimal format, %b =
display value in binary format.

19

