
University of Hawaii
EE 361L

Getting Started with Spartan 3E
Digilent Basys2 Board

Lab 4.1

I. Test Basys2 Board

Attach the Basys2 board to the PC or laptop with the USB connector.

• Make sure the blue jumper (a blue plastic connecter) is configured to PC rather than ROM.
• Also be sure the sliding power switch is on power “ON”

Start the Digilent Adept software tool as shown below. This can be found in the Digilent folder.

Select “Test” and “Start Test”. The board should light up, cause the 7 segment displays to count 0, 1, 2,..., and
connect the sliding switches to LEDs, causing them to go on and off.

The Adept software will indicate the FPGA you have in the Basys2 board. For example, the following figure
indicates that the FPGA is the 250 type (roughly 250 thousand gates). The boards that we have will be either
the 100 or 250 type.

II. Create a Project

The project is to build a combinational circuit called a decoder which has

• Two inputs A[1] and A[0]
• Four outputs Y[3], Y[2], ... Y[0]

and the following truth table

A Y
00 0001
01 0010
10 0100
11 1000

First, we’ll create and simulate a verilog module for the decoder, and then we’ll synthesize and download into
the Xilinx Spartan 3E FPGA of the Basys2 board. The input A will be connected to 2 slide switches and the
output Y will be connected to four LEDs.

Step 1. Start ISE Software (version 13.1)

Step 2. Start a New Project

• Go to File and select New Project
• Name it Lab4.1A
• Top level source type: HDL

Step 3. Fill in the properties in the table as shown below:

o Evaluation Development Board: None specified
o Product Category: All
o Family: Spartan3E
o Device: XC3S100E or it’s the 200 device depending on the Basys2 board
o Package: CP132
o Speed Grade: -4
o Top-Level Source Type: HDL
o Synthesis Tool: XST (VHDL/Verilog)
o Simulator: ISim (VHDL/Verilog)
o Preferred Language: Verilog

Then go on and Finish

III. Create an HDL Source

Step 1. Under Project, select New Source -> Verilog Module and name it “decoder.v”, and be sure “Add to the
Project” is checked.

Step 2. Configure the ports as shown below

Step 3. Then a template of a verilog module will be created. It will have the ports of the module already
written. Complete the module by fill in the following shown in blue

module decoder(
 input [1:0] A,
 output [3:0] Y
);

reg [3:0] H;

assign Y = H;

always @(A)
 case(A)
 2'b00: H=4'b0001; // Note that 4'b0001 means "4" bits of "0001"
 2'b01: H=4'b0010;
 2'b10: H=4'b0100;
 2'b11: H=4'b1000;
 endcase

endmodule

Step 4. In the project window select Synthesize -XST

It’ll try to synthesize. If you have any bugs, edit the verilog module source. You can always rerun the
synthesizer by right clicking “Synthesize-XST” and selecting rerun. This is true for any of the processes, e.g.,
I/O Pin Planning (which is discussed next) – just right click and rerun.

Step 5. Go back to your Design

and select I/O Pin Planning (PlanAhead) – Pre-Synthesis. This will open the PlanAhead software, which will
fill in your UCF with information about connecting your signals to pins.

It may also ask you for a UCF, which is the universal constraint file. Select “Yes” in the window below:

A UCF will specify, among other things, how the signals (inputs and outputs) of your circuit are connected to
the pins of the FPGA. For example, your decoder circuit should have its input A connected to two sliding
switches, and its output Y should be connected to four LEDs.

The software will complain that you have no clocks, so just select okay to get rid of that little window.

Note it may take a while for PlanAhead to get loaded, perhaps a few minutes.

Step 6. The PlanAhead software will show the signals of your circuit and the pins.

The I/O ports A and Y should be connected to pins as follows. Note that a description of these pins and what
devices they are connected to is given on page 11 of the Basys2 Reference Manual.

Decoder Signals FPGA pins Comments
A[1] L3 Sliding Switch SW1
A[0] P11 Sliding Switch SW0
Y[3] P6 LED LD3
Y[2] P7 LED LD2
Y[1] M11 LED LD1
Y[0] M5 LED LD0

In PlanAhead, under I/O ports, select the pins for the ports under “Site”, as shown below

In PlanAhead, after setting all the ports, then “Save Project”. This will save the UCF information into a file. If
you make any changes, then “Save Project” so that the information can be used by the other software and in
particular the Xilinx ISE.

The following shows how the pins are connected to devices on the board

Figure 1. How switched and LEDs are connected to the FPGA.

Step 7. Double click “Implement Design”

Step 8. Double click “Generate Programming File”

This should create a bit file in the root folder of your project.

Step 9. Use the Adept software to download the bit file into the FPGA. Choose “Config” and find the bit file.
It should be in the root directory of your project. Then “Program”.

Show the TA that it works.

IV. Sequential Circuit

We will implement a simple 2-bit counter circuit with a clock input and 2-bit output Q. It has a single Reset
input, which when enabled will cause the counter to reset to Q = 00 at the next clock transition. If the Reset = 0
then the counter increments every half-second.

The Basys2 board has an onboard clock at 50 MHz at pin B8. We must connect the counter’s clock input to pin
B8.

The outputs of Q are connected to LED1 and LED0. We will connect the Reset to push button 0.

Step 1. Create another Project and name it Lab4.1B.

Step 2. Add the following two new verilog modules.

First, add the new module “counter.v”.

Then add the new “halfsec.v” module, which will be a submodule of counter. This can be done by right
clicking “counter.v” and selecting to add a new verilog module.

module counter(
 output [1:0] Q,
 input clock,
 input reset
);

reg [1:0] state;
wire halfsec_elapsed;

halfsec timer(halfsec_elapsed, clock, reset);

always @(posedge clock)
 begin
 if (reset == 1) state <= 0;
 else if (halfsec_elapsed == 1) state <= state+1;
 end

assign Q = state;

endmodule

// More on next page

// Timer that indicates a half-second duration
module halfsec(
 output Y,
 input clock,
 input reset
);

reg elapsed; // indicates that half second elapsed

// State of the timer. Must be able to have more than 25 million values
// So we choose it to have 26 bits. 26 bits is a bit of an overkill but it'll work.
reg [25:0] state;

always @(posedge clock)
 if (reset == 1) state <= 0;
 else if (state == 25000000) state <= 0;
 else state <= state + 1;

always @(state)
 if (state == 25000000) elapsed = 1;
 else elapsed = 0;

assign Y = elapsed;

endmodule

Now synthesize

Step 3. Under User Constraints, select I/O Planning (PlanAhead) – Pre-Synthesis

Here is the table to connect the signals of the counter to the pins of the FPGA.

Counter Signals FPGA pins Comments
clock B8 On-board clock 50 HHz
Reset G12 Push button 0
Q[1] M11 LED LD1
Q[0] M5 LED LD0

Don’t forget to save the PlanAhead project.

Step 4. Implement and Generate bit file. Then program the Basys2 board. Show the TA.

	I. Test Basys2 Board
	II. Create a Project
	III. Create an HDL Source
	IV. Sequential Circuit

