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Explanation of PIC 16F84A processor data sheet -- Part 3:  Final Overview of PIC 
 
This is the last of the three part overview of the PIC processor.  We will discuss interrupts, oscillators, reset 
and the sleep mode.  Most of the topics are relevant to Lab 2.3.  The topics that aren’t as relevant are Reset 
and Oscillators, but these were included to round out the overview. 
 
Interrupts 
 
What is an interrupt?  Here is an example to illustrate the concept.  Suppose we have a computer that is 
normally used to play video games as shown in Figure 1.  The computer also has Internet telephony software 
that makes it work like a telephone.  The computer user would like to play the game until he/she gets a 
telephone call.  Then the user would like to talk on the telephone.  When the conversation is over, the user 
will resume playing the game. Now, the telephone connection acts like an interrupt (interruption) to the game, 
and when interrupted, the telephone software has to step in (interrupt handler). 
 
 
 
 
 
 
 
 

 
Figure 1. Computer that runs video games and a telephone. 

 
Interrupts can be implemented by hardware or software. A software interrupt is similar to a function call in C. 
A hardware interrupt is also like a function call in C except that invoking the call is done by hardware, i.e., a 
signal from a circuit, e.g., an external signal from a pin of the PIC.  Before explaining interrupts further, we will 
review a function call. The following is an example of a function and a function call. 
 
int sum;  // Global variable 
 
main()  { 
int i;  
sum = 1; 
while(1) incr2(); 
} 
 
void incr2() 
{  
sum++; 
sum++; 
 } 
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Note that main calls the function incr2.  Also, note that incr2 is called on every pass through the while-loop.  
Next, is an example of a program with an interrupt handler  “clear”.   
 
int sum;  // Global variable 
 
main()  { 
int i;  
sum = 1; 
while(1) incr2(); 
} 
 
void incr2() 
{  
sum++; 
sum++; 
 } 
 
// ---- Interrupt handler 
void interrupt clear() 
{  
sum = 0; 
} 
 
The interrupt handler clear( ) looks like a C function but it is never called by main( ) or any other C function in 
the program, e.g., incr2( ).   This is an interrupt handler for a hardware interrupt.  It is associated with a pin on 
the processor chip.  Whenever the pin is enabled (causing an interrupt), the processor will jump from the main 
program and execute the interrupt handler.  When it has finished executing the handler, the processor 
resumes executing the main program. 
 
We will discuss the interrupt features of the PIC 16F648A, but let’s first discuss a processor with a simpler 
interrupt system to illustrate some basic concepts.  The processor is shown in Figure 2(a).  In this example, 
whenever there is a positive transition on pin 2, it will cause an interrupt.  The processor shown in Figure 2(b) 
has an enhancement.  It has a software programmable bit called INTE for Interrupt Enable.  Whenever INTE = 
1, the interrupt works.  When INTE = 0, then the interrupt is disabled.  Basically, the INTE bit will cut off the 
INT signal through the AND circuit.  This interrupt is referred to as “maskable” since because INTE can mask (in 
this case, cut-off) interrupt signals. 

 

INT 
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Figure 2.  Processors with simple interrupts. 
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The interrupts in Figure 2 are called edge triggered because they occur whenever a signal transition occurs.  
There are also level triggered interrupts, where an interrupt occurs when a voltage value occurs, e.g., 
whenever the voltage value is 0v. 
 
An issue with interrupts is that once they occur, you would like to complete service of the interrupt without 
interruption. Figure 3 shows one way to accomplish this.  The internal interrupt circuitry of the processor is 
positive edge triggered.  

 
Also shown is an interrupt flag circuit between the external signal input and the AND circuit.  This circuit’s 
output is called INTF for interrupt flag. Normally, it’s zero.  But when an interrupt event occurs, the INTF will 
go to 1.  This causes a positive edge that will trigger an interrupt (if INTE = 1).  The INTF stays set at 1, any 
subsequent interrupt event does not cause a positive edge to the processor.  The interrupt is effectively 
disabled.   
 
The processor is designed so that the INTF flag can be cleared to zero by software.  In this way the program 
can re-enable the interrupt pin once it has completed service of the current interrupt. 
 
The interrupt flag circuitry will have different implementations depending on the type of interrupt, e.g., 
whether it is edge triggered or level triggered.  But its main property is that once an interrupt event has 
occurred, the INTF is set to 1 and remains there until it is reset by software.   
 
Figure 4 is an example of two interrupts at pins 1 and 2.  The processor will interrupt if either of the two pins 
causes an interrupt.  Both pins can be disabled through INT1E and INT2E.  Also, both pins have interrupt flags 
INT1F and INT2F.  Notice that the OR circuit indicates that an interrupt occurred but not which one.  The 
processor must then check (or poll) the two flags INT1F and INT2F to determine which pin caused the 
interrupt.  The flag that is set to 1 caused the interrupt.  The program can now choose the right service to for 
the interrupt. 
 
Figure 5 shows the interrupt logic for the PIC 16F648A.  There are a lot of interrupt possibilities, but we will 
concentrate on a few, and in particular T0I (Timer0 circuit), INT (edge triggered interrupt of pin RB0/INT), and 
RBI (level triggered interrupts of PORTB). 
 

Figure 3.  Another processor with a simple interrupt. 
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Figure 5.  Interrupt logic of the PIC 16F648A from page 109 of the datasheet. 
 
 
 
The PIC 16F648A has the INTCON register (interrupt control register).  Figure 6 has a description.  It also 
explains the bits in Figure 5. 

Figure 4.  Yet another processor with a simple interrupt. 
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Figure 6.  Interrupt Control (INTCON) register description from page 26 of the data sheet. 

 
 
The GIE bit will enable or disable all the interrupts.  Its default value is 0, which means all interrupts are 
disabled.  Also, whenever the processor is interrupted, the GIE bit is cleared to 0.  This ensures that while the 
processor can complete handling the interrupt without being interrupted again.  When the program 
completes execution of the interrupt handler routine, the GIE bit is set to 1 again and the processor will 
subsequently accept new interrupt signals. 
 
The other bits are interrupt flags and enable bits for the TIMER0, INT edge triggered interrupt, PORTB 
interrupts, and the peripheral interrupts.  We will not use the peripheral interrupts in this lab, so the PEIE bit 
should be cleared to 0.  Notice in Figure 5 that disabling PEIE will disable a lot of interrupts. 
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The TIMER0 interrupt occurs when the TIMER0 circuit wraps around, i.e., it goes from the value 255 to 0, 
which sets the T0IF flag to 1 – recall this from Lab 2.2. 
 
Some of the bits of PORTB can also be interrupt inputs.  An interrupt event occurs whenever the values 
change, from high-to-low or from low-to-high.  We will not use these in Lab 2.3, so we should clear RBIE = 0. 
 
We will use the INT edge triggered interrupt, so we should set INTE= 1.  Notice that the RB0/INT pin is used as 
INT, and so RB0 is not available as a port for the PIC. 
 
The following summarizes how we should set the bits of INTCON for Lab 2.3. 
 

Bit # Name Value Comment 
7 GIE 1 Enable interrupts 
6 PEIE 0 Disable peripheral interrupts 
5 T0IE 0 Disable TIMER0 interrupt 
4 INTE 1 Enable INT interrupt 
3 RBIE 0 Disable RB interrupts 
2 T0IF x Don’t care since we disabled this interrupt 
1 INTF 0 Clear INTF so we can accept a new interrupt from INT 
0 RBIF x Don’t care since we disabled this interrupt 

 
Another register to consider for interrupts is the OPTION_REG, which we used earlier in Lab 2.2.  This is shown 
in Figure 7.  In particular the Interrupt Edge Select (INTEDG) bit can control whether the interrupt is positive or 
negative edge triggered.  For Lab 2.3, we should set INTEDG = 1 for a positive edge triggered interrupt. 
 

 
Figure 7.  The OPTION_REG from page 25 of the data sheet. 

 
 
Here is a complete program for the PIC 16F648A that illustrates the use of an interrupt to reset a Counter.  
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#include <htc.h> 
 
int count;  // Global variable that is the state of a counter 
void backup(void); 
//  The main routine constantly increments "count" and calls the function "back-up" 
 
main() 
{  
//Check what is being initialized in the next statement.  Which interrupts are enabled and disabled? 
INTCON=0b10010000; 
 
// The following statement has the interrupt of INT occur on the rising edge.   Here we use a bit-wise OR operation.   
// The value “01000000” is called a “mask”.  If a mask bit is 0 then the resulting bit stays the same, but if a mask bit 
// is 1 then  the resulting bit is set to 1.  In this case, we want bit 6 (INTEDG) of OPTION_REG to be set  to 1, and all  
// the other bits remain unchanged. 
OPTION_REG = OPTION_REG | 0b01000000; 
 
count = 0; 
 
while(1) { 
   count++; // Increments count 4 times 
   count++; 
   count++; 
   count++; 
   backup(); // Decrements count 3 times 
   } 
} 
 
void backup()     // The function backup will decrement the "count" three times 
{ 
count--; 
count--; 
count--; 
} 
 
void interrupt clear_count()  // This is the interrupt handler.  It clears "count". 
{ 
count = 0;  
INTF = 0; // Reenable the INT interrupt 
} 
 
If you want to read more about interrupts for the PIC 16F648A, the section in the data sheet is Section 14.5 
that begins on page 109. 
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The above program can be made easier to read by using macros from header files for the PIC.  If the 
pic16f648.h header is used then we can replace  
 
OPTION_REG = OPTION_REG | 0b01000000; 
 
with INTEDG = 1; 
 
and  
 
INTCON=0b10010010; 
 
with  
 
INTCON = 0;  // Clear all bits in INTCON 
INTE = 1;       // Then set INTE and GIE 
INTF = 0;       // To ensure this flag doesn’t interfere with an interrupt signal 
GIE = 1;         // After setting all the configuration bits of the interrupts, you can allow interrupt signals in 
 
(Note that GIE is set to 1 at the end after all the interrupt enable bits have been set.) 
 
To determine which of these labels can be used, read the pic16f648.h header file.  Attached to this document 
is pic16f628.h, which is for a similar PIC though it has less program memory --  I couldn’t find a file for the 
16f648.   
 
The header file can also be found at the following web site (this is easier to read): 
 
http://www.koders.com/c/fidF0A44D2E07FDA885907A43D10570315D0D832304.aspx 
 
Register names come under “Register Definitions”, INTCON register comes under “INTCON bits”, and 
OPTION_REG register comes under “OPTION_REG bits”. 
 
Also you can set the Configuration Bits in software too.  Recall that so far we have set the Configuration Bits 
through MPLAB under the “Configure” window.  But you can set the configuration bits using the command 
 
_CONFIG(  ); 
 
which is a MACRO from the C compiler.  List all the options you want for the configuration bits.  For example, 
to turn off the Watchdog Timer, select the Crystal Oscillator (XT), and turn on the master clear, we have 
 
_CONFIG(_WDT_OFF  &  _XT_OSD  &  _WDT_OFF); 
 

http://www.koders.com/c/fidF0A44D2E07FDA885907A43D10570315D0D832304.aspx
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But don’t use this method for Lab 2.3, just use the configuration option in MPLAB as you did for the previous 
labs. 
 
Reset 
 
There are a number of options to reset the PIC.  This is to ensure that it powers up properly.  Also, there are 
different ways the PIC can be reset.   Three possibilities are a time out of the watch dog timer, brown-out 
reset, and an external reset signal.  Section 14.3 of the data sheet on page 101 explains these reset options. 
 
Power Down Mode 
 
An important feature of the PIC is the ability to go to sleep.  In this mode, the PIC uses minimal current 
(power), and the internal clock is suspended, though the Watch Dog Timer is still running.  While in sleep 
mode, the PIC suspends running the program; and when awaken, it resumes running the program.  The PIC 
goes to sleep by executing the SLEEP instruction.  It can be awaken in one of three ways:  reset signal, Watch 
Dog Timer time-out, or interrupt from an external signal.  It must be configured to wake up in one of these 
ways before it goes to sleep.    
 
The reset signal will cause the PIC to reset, but the other two ways will cause the PIC to resume running from 
where it slept.  Note from Figure 5, the interrupts will cause the PIC to awaken regardless of the value of GIE 
(general interrupt enable).  However, the behavior of the PIC when it is awaken depends on the GIE bit.  If the 
GIE bit = 0 then the PIC resumes running its program.  If the GIE bit = 1 then the interrupt is enabled.  Thus, 
when the PIC is awakened by an interrupt signal, it goes to the interrupt handler. 
 
A detailed discussion of the power down mode is in Section 14.8 of the data sheet starting at page 112. 
 
Watch Dog Timer 
 
Recall that a Watch Dog Timer can help ensure that a processor avoids getting stuck in a bad state.  When a 
time out occurs, the processor is reset.  However, if the processor is in sleep mode then the processor just 
resumes executing the program at the time it went to sleep.  So the processor behaves different to a time out 
depending on whether it is awake or asleep. 
 
The Watch Dog Timer has a nominal time out of 18 ms.  The timer can use the prescalar circuit as a postscalar.  
A postscalar circuit will lower the rate of the time out.  The postscalar division ratios are 1:1, 1:2, ..., 1:128.   
For example, if we choose a 1:128 division ratio, the Watch Dog Timer will time out at 128 x 18 ms = 2.3 
seconds.  The postscalar can be enabled by setting the PSA bit to 1 in the OPTION_REG.  The postscalar is also 
set in the OPTION_REG in the PS2-PS0 bits.  Figure 8 shows the postscalar circuit with the Watch Dog Timer.  
Figure 9 has the values to set PS2-PS0. 
 
CLRWDT is the machine instruction that clears the Watch Dog Timer.  It also clears the postscalar, so that may 
have to be reinitialized. 



Galen Sasaki, Department of Electrical Engineering, University of Hawaii 

 

10 

 

 
To access the CLRWDT and SLEEP instructions in a C program, you can use 
 
#asm 
CLRWDT 
#endasm 
 
or in Hitech C the macros are 
 
SLEEP(); 
CLRWDT(); 
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Figure 8.  Watch Dog Timer and postscalar information from the data sheet on page 112. 

 
 

 
 

Figure 9.  The PSA and PS2-PS0 values in OPTION_REG from page 25 of the data sheet. 
 
 
When the Watch Dog Timer times-out then the \TO bit in the STATUS register is cleared to 0 (note that \TO 
should be TO overbar) as shown in Figure 10.  When a PIC goes to sleep and then wakes up, it can check this 
bit to determine if it woke up due to the Watch Dog Timer. 
 

 
Figure 10.  STATUS register from page 24 of the data sheet of the PIC. 
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The following is a blinking LED program that sleeps and awakens using the Watch Dog Timer.  Pin RA1 is 
connected to the LED. 
 
main( ) // BLINKING LED program 
{ 
// Set PORTA so that RA4-RA0 are outputs. 
TRISA = 0b00000; 
   
while(1) { // Loop forever 
   RA1 = 0;      // Turn LED off 
   delay10ms();     // Drive the output for 10 ms 
   powerdown();     // Go to sleep for 1.2 seconds.  This function is on the 
    // next page. 
   RA1 = 1;      // Turn LED on 
   delay10ms();     // Drive the output for 10 ms 
   powerdown();     // Go to sleep for 1.2 seconds 
   } 
} 
 
void delay10ms( ) // A delay of (approximately) 10000 clock cycles 
{  
unsigned n; 
 
TIMER0 = 0; // Initialize TIMER0.  This clears the prescalar. 
// Now we set the OPTION_REG so that TOCS, TOSE, PSA, and PS2-PS1 are 0. 
n = OPTION_REG & 0b11000000;  // The prefix “0b” means the number is binary 
n = n | 0b00000111; 
OPTION_REG = n; 
while (TIMER0 < 40); 
} 
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void powerdown() // Go to sleep for approximately 1.2 seconds 
{ 
unsigned n; 
 
n = OPTION_REG & 0b11110000;  // Mask out bits for PSA and PS2-PS0 
n = n | 0b00001110;           // Set PSA = 1 (to switch prescalar to WDT) 

   // and PS2-PS0 to 110.  Then 
                              // for the postscalar, the divide is 1:64. 
                              // Then watch dog timer timeout = 1.8ms x 64 
                              // which is 1.2 seconds 
#asm 
CLRWDT;       // Clear watch dog timer, which also clears PS2-PS0 
#endasm 
 
OPTION_REG = n;               // Set PSA and PS2-PS0. 
 
#asm 
SLEEP;                        // Go to sleep 
#endasm 
} 
 
Oscillators 
 
The PIC processor requires a clock signal and it has a number of options.  It can use a crystal as we have seen 
in the previous labs.  It can use an internal clock circuit or it can use an external clock signal.   The crystal 
configuration is the most accurate method of generating a clock signal. 
 
If clock accuracy is not very important then the PIC’s own internal clock generator circuit can be a good choice 
since it leads to a simpler circuit.  This internal clock circuit is an RC circuit connected to a comparator 
(Schmidt trigger) as shown in Figure 11.   When the input to the comparator has low voltage then the RC 
circuit will pull the input signal up.  The rate that the signal rises depends on the RC value.  When the input is 
above a threshold then the output of the comparator goes high.  This causes the transistor to discharge the 
input of the comparator.  The input goes back down to a low voltage and the comparator output goes low as 
well.  The transistor is turned off, and again the RC circuit pulls the input of the comparator up again. 
 

 
 

Figure 11.  The RC oscillator configuration. 
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Odds and Ends 
 
LVP is the low-voltage programming bit.  It is part of the CONFIG register.  If LVP = 1 then the low-voltage 
programming is enabled.  We don’t use this.  So set LVP = 0.  This will the RB4/PGM bit operate as the RB4 
port.  So if LVP = 1, we can’t use the RB4 port. 
 
Finally, you will notice that we also have PORTA ports (e.g., RA0, RA1, ....).  Some of these ports are shared 
with the crystal oscillator (RA6 and RA7) and the master clear (RA5). 
 
The rest of the ports are shared with analog comparator circuits (RA2 – RA5).  The default of these ports is that 
they are disabled.  To enable them you set bits in the Comparator Control (CMCON) and Voltage Reference 
Control (VRCON) registers.  Basically, you have to set the last three bits of CMCON to 1s (ones) to disable the 
comparators and allow the pins to be connected to RA2-RA5.  You must also set TRISA to configure the ports 
as inputs or outputs, where “1” means “input” and “0” means “output”.  This is similar to TRISB for PORTB. 
 
We haven’t used PORTA because it’s more complicated than PORTB, and PORTB is sufficient for our needs. 
 
 
 


