Elements of Reinforcement Learning

- Policy: way learning algorithm behaves (mapping from state to action)
- Reward function: Mapping of state action pair to reward or cost
- Value function: long term reward, total weighted or unweighted reward in present and future
- Model: mimic behavior of environment
Evaluative Feedback Example

- Consider n-armed bandit problem: at every instant must choose one of n actions with the goal of maximizing rewards.
- Expected reward for action a, $Q^*(a)$ and estimated value of tth play $Q_t(a)$. Set
 \[Q_t(a) = \frac{\sum r_i}{k_a} \]
 where k_a is number of times action a taken
- Exploration versus exploitation
- How to choose action a
Policies for n-armed bandit problem

- Greedy policy: $Q_t(a^*) = \max_a Q_t(a)$. No exploration, initially does well, but poor long term performance.
- ϵ-greedy policy: same as greedy policy, but with prob. ϵ randomly choose policy. Some exploration, does better than greedy policy.
- Softmax Action selection: weight actions probabilistically with temperature parameter (Gibbs distribution).
- Reinforcement methods: keep track of payoffs (reinforcement as opposed to action-value method).
- Pursuit methods: use both action-value estimates and action preferences.
Summary of example

- Exploitation versus Exploration
 - Algorithms presented
 - What is the proper balance?

- Learning schemes
 - Supervised learning: instructed what to do
 - Evaluative learning: try different actions and observe rewards (allows more control of environment)

- Non associative learning: trial and error learning not associated with situation or state of the problem (only one state)
Reinforcement Learning Model

- Exploration versus exploitation
- Learning can be slow
Finite Markov Decision Processes

- **Parameters**
 - State: \(X(n) = x(n) \), \(N \) states
 - Action: \(A(n) = a_{ik} \) (action from state \(i \) performing action \(k \))
 - Transition probability: \(p_{ij}(a) = P(X(n+1) = j \mid X(n) = i, A(n) = a) \)
 - Cost: \(r(i, a, j) \) and discount factor \(\gamma \), with \(0 \leq \gamma < 1 \)
 - Policy: \(\pi = \{ u(0), u(1), \ldots \} \), policy mapping states into actions (stationary and nonstationary)
Value Functions

- Cost or value function (infinite horizon, discounted)
 \[J^\pi(i) = E \left(\sum \gamma^n r(x(n),u(x(n)),x(n+1)) | x(0)=i \right) \]
 averaged over Markov chain \(x(1),x(2), \ldots \)
- Action-value function
 \[Q^\pi(i,a) = E \left(\sum \gamma^n r(x(n),u(x(n)),x(n+1)) | x(0)=i,a(0)=a \right) \]
 averaged over Markov chain \(x(1),x(2), \ldots \)

Find policy \(\pi \) that minimizes \(J^\pi(i) \) for all initial states \(i \)
Recursive expression for value function

\[J_\pi(i) = E \left(\sum \gamma^n r(x(n), u(x(n)), x(n+1)) \mid x(0)=i \right) \]
\[= E(r(i, u(i), j) + \gamma \sum \gamma^n r(x(n+1), u(x(n+1)), x(n+2)) \mid x(1)=j) \]
\[= \sum_a \sum_j \pi(i, a) p_{ij}(a) (r(i, a, j) + \gamma J_\pi(j)) \]

Bellman equation for \(J_\pi \) allows for calculation of value function for policy \(\pi \).
Equation can be solved iteratively or directly.
Optimal Value Function

Want to find optimal policy to maximize value function

\[J^*(i) = \max_{\pi} J^\pi(i) \]

Can express optimal value function in terms of action-value function as

\[J^*(i) = \max_{u(i)} Q^*(i,u(i)) \]

where \(Q^*(i,u(i)) = \max_{\pi} Q^\pi(i,u(i)) \)

Then can find a recursive expression for \(J^*(i) \) by expanding RHS of equation similar to method found in previous slide for value function.
Use dynamic programming, can formulate cost function in terms of Bellman’s Optimality equation

$$J^*(i) = \max_u E_{x(i)} [r(i,u(i),x(i)) + \gamma J^*(x(i))]$$

Current cost: $c(i,u(j)) = E_{x(i)} [r(i,u(i),j)] = \sum_{j=1,N} p_{ij} r(i,u(i),j)$

Rewrite Bellman’s equation

$$J^*(i) = \max_u [c(i,u(i)) + \gamma \sum_{j=1,N} p_{ij} J^*(j)]$$

System of N equations with (equation/ state) and minimization
Policy Evaluation and Improvement

- **Policy Evaluation:** For a given policy we can iteratively compute value function

\[J_{k+1}^\pi(i) = \sum_a \sum_j \pi(i,a) p_{ij}(a) (r(i,a,j) + \gamma J_k^\pi(j)) \]

Iterative algorithm converges.

- **Policy Improvement:** Q function can be expressed iteratively as

\[Q^\pi(i,a) = c(i,a) + \gamma \sum_{j=1,N} p_{ij}(a) J^\pi(j) \]

u is said to be greedy with respect to \(J^u(i) \) if

\[u(i) = \max_a Q^\pi(i,a) \text{ for all } i \]
Policy Iteration

1) Policy evaluation: $J^u (i)$
Cost to go function needs recomputation

$$J^n_u(i) = c(i, u_n(i)) + \gamma \sum_{j=1}^{N} p_{ij} (u_n(i)) J^n_u(j)$$

Solve set of N linear equations directly or iteratively.

2) Policy improvement: $u_{n+1}(i) = \text{argmax}_a Q^n_u(i,a)$
Value Iteration

- Initialization: start with initial value $J_0(i)$
- Iterate: $Q(i,a) = c(i,a) + \gamma \sum_{j=1,N} p_{ij} J_n(j)$

 $$J_{n+1}(i) = \max_a Q(i,a)$$

- Continue until $|J_{n+1}(i) - J_n(i)| < \varepsilon$
- Compute policy: $u^* = \arg\max_a Q(i,a)$
Dynamic Programming Comments

- Number of states often grows exponentially as number of state variables. (Bellman’s curse of dimensionality)
- For large state spaces it is infeasible to search entire state space to perform DP steps. Asynchronous DP used where partial searches and updates are made of state space.
- DP programs run polynomially in number of states and actions.
- GPI (Generalized Policy Iteration) often used instead of PI where Policy Evaluation and Policy Improvement done together.
- DP assumes complete knowledge of environment.
Approximate Dynamic Programming

- Incomplete information (do not know Markov transition probabilities)
- Curse of dimensionality
- Opt for suboptimal policy where $J^*(i)$ replaced by approximations of $J^*(i)$ that can consist of table lookup or parameterized by set of weights
- Use Monte Carlo simulations to learn policy
- Q learning
Q Learning Algorithm

- Define Q function
 \[Q^*(i,a) = \sum_{j=1}^{N} p_{ij}(a) \left(r(i,a,j) + \gamma \max_b Q^*(j,b) \right) \]
 \[J^*(i) = \max_a Q^*(i,a) \]

- Use iterative learning to learn Q function
 \[Q_{n+1}(i,a) = (1-\mu(i,a)) Q_n(i,a) + \mu(i,a)(r(i,a,j) + \gamma J_n(j)) \]
 where j is random successor state with
 \[J_n(j) = \max_b Q_n(i,b) \]

- Monte Carlo Simulations: update only applies to current state-action pair all other pairs are not updated
Q Learning Comments

- **Convergence Theorem**: Q Learning algorithm converges almost surely to optimal Q function given certain conditions on step size (stochastic approximation conditions) and all state pairs are visited infinitely often.

- **Representations**: Table lookup works well, but networks parameterized by weights often learn very slowly.

- **Exploration vs. exploitation**: ensure all state-action pairs are explored while also minimizing cost to go function.
Temporal Difference Learning

- Given a learning sequence where a termination occurs and a reward is given, how do we learn?
- Credit assignment to each training input in the sequence can be performed using temporal difference learning.
- Iterative learning algorithms can then be established with inputs and target outputs.
- Class of TD(\(\lambda\)) algorithms where \(0 \leq \lambda \leq 1\).
- Learning much slower than supervised learning.
Reinforcement Learning Applications

- Backgammon
- Navigation
- Elevator control
- Helicopter control
- Computer network routing
- Sequential detection
- Dynamic channel allocation (cellular system)
References