Adaboost (resample)

- Boosting by filtering (takes too many examples)
- Adaboost use same training examples, but change distribution on which you sample
- Adaboost is simple to implement and used on many applications and different types of learning machines
Boosting Algorithm

- **Input:** \(S = ((x(i), d(i)), 1 \leq i \leq m) \)
- **Initialization:** Choose distribution \(D_1 \) that picks inputs equally likely and let \(0 < \gamma < \frac{1}{2} \) be the weak learning rate (i.e. algorithm produces an error rate less than \(\frac{1}{2} - \gamma \))
- **Iterate:** for \(n=1 \ldots T \)
 - Call weak learning algorithm \(L \) with examples chosen from distribution \(D_n \)
 - Get outputs from \(h_n : X \rightarrow Y \)
 - Calculate error \(\varepsilon_n = \frac{1}{2} - \gamma_n \leq \frac{1}{2} - \gamma \)
 - Update \(D_{n+1} \) based on training errors
- **Produce hypothesis** \(h \) from \(h_1, \ldots, h_T \)
Adaboost algorithm

- Choosing D_n

 $$D_{n+1}(x(i)) = D_n(x(i)) \exp \left(- \alpha_n h_n(x(i))d(i) \right) / Z_n$$

 where Z_n is a normalization constant.

- Output hypothesis

 $$h(x) = \text{sgn} \left(\sum_{n=1:T} \alpha_n h_n(x) \right)$$

- Last time showed that empirical error decays exponentially as T, the number of times examples are resampled.

- Examine generalization error
Generalization Error using VC bounds

- Using VC bounds can find upper bounds on generalization error

 \[P(d \neq h(x)) \leq \text{error}(h(S)) + O((Td/m)^{1/2}) \]

 where \(d \) is VC dimension of concept class.

- Error depends on \(T \), the number of times resampling is done, but experimental results indicate that generalization error for boosting decreases as \(T \) increases. Schapire shows how generalization error decreases even when training error is zero.
Generalization error using margin bounds

- Let α_i be a sequence of nonnegative constants with $\sum_{i=1}^{m} \alpha_i = 1$. Let $f(x) = \sum_{n=1}^{T} \alpha_n h_n(x)$, then margin is $\text{mar}_f(x,d) = f(x)d$. Then $|\text{mar}_f(x,d)| \leq 1$.

- Boosting works on examples that have small positive margin or negative margin. It increases the margin on the examples that have the smallest margin.

- $P(d \neq h(x)) \leq P(\text{mar}_f(x,d) \leq \theta) + O((d/(m\theta^2)^{1/2})$

Here generalization error bound is independent of T.

References

Bayesian Methods

- Information about knowledge formulated probabilistically
 - Model defined with unknown parameters
 - Specify prior distribution
- Gather data
- Compute posterior distribution
- Use posterior distribution to: make predictions, make decisions, reach conclusions
Finding Posterior Distribution

- Bayes Rule
 \[P(\text{param.} | \text{data}) = \frac{P(\text{data} | \text{param.})P(\text{param.})}{P(\text{data})} \]
- Posterior \(\propto\) Likelihood \(\times\) Prior
- To make predictions on new data
 \[P(\text{new data} | \text{data}) = \int P(\text{new data} | \text{param.})P(\text{param.} | \text{data}) \]
Representing Priors and Posterior Dist.

- Priors and posterior distributions often have complex distributions that are not easily represented
- Represent distributions using samples
 - Obtaining a sample from priors
 - Obtaining a sample from posterior distribution (more difficult)
- Example: A Hard Linear Classifier (Radford Neal, NIPS 2004 tutorial)
Comparison of Bayesian Learning to other methods

- Bayesian learning not tied down to specific network architecture (model, priors, posterior)
- Learning theory: architecture pre-specified with parameters tuned to training data
- Bias versus Variance \((\text{MSE} = (\text{Bias})^2 + \text{Variance})\)
 - Bias is deviation from average value (model not complex enough to realize training data)
 - Variance is average squared error away from average (model too complex and data is overfit)
Choosing a Model and Priors

- Model should be ubiquitous to consider practically all possibilities and may contain latent variables.
- Priors should consider a wide range of possibilities, but avoid being too spread out and may contain hyperparameters.
- The model and priors are tested based on prior knowledge and beliefs. If they do not fit, then model and prior are adjusted.
- Process involves testing model and priors, revisions, and retesting (should not be influenced by data).
Computing Posterior Distributions

Different approaches to computing posterior distribution

- **Analytical integration:** may not be possible or feasible
- **Gaussian approximation:** can work well when there is a lot of data
- **Monte Carlo integration:** simple MC (sample from posterior), importance sampling, Markov Chain Monte Carlo (MCMC).
- **Variational approximations**
Gaussian Priors

- Assume priors are Gaussian, then can assume an underlying network model exists or consider Gaussian processes.
- Underlying network model: multi-layer perceptron, Support Vector Machine. In limit, from Central Limit Theorem outputs may still be approximately Gaussian.
- For Gaussian processes the key is to learn the mean and covariance functions.
Bayesian Framework

- Repeated use of Bayes rule as hyperparameters are adjusted at different levels
- Can use network model or Gaussian processes
- Use Gaussian priors or mixture model
- Regularization incorporated in Bayesian framework
- Procedure can be time consuming as hyperparameters are continually adjusted for different network models and parameters
Bayesian Learning Methodology Example

1) Initialize α and β where $J(w) = \frac{1}{2}\alpha w^Tw + \frac{1}{2} \beta e^Te$ based on priors and previous estimate performance

2) Use optimization algorithm to train network to minimize $J(w)$ based on given α and β and go to 1)

3) Use different set of model parameters (e.g. modify parameters of kernel) and go to 1)

4) Use different network models and go to 1)
References