PAC Learning

Probably Approximately Correctly: Let C be a concept class over X. C is PAC learnable if there exists L such that for $c \in C$, for every distribution D on X, for all $0 < \varepsilon < 1/2$, $0 < \delta < 1/2$, then with probability of at least $1 - \delta$, L outputs hypothesis $h \in C$ such that $P(c \neq h) < \varepsilon$.

If L runs in time polynomial in $1/\varepsilon$, $1/\delta$ and m we say C is efficiently PAC learnable. ε is error parameter and δ is confidence parameter.
Learning Theorem

- Theorem: Let C be any concept class with $\text{VC}(C)=d$. Let L be any algorithm that takes as input a set S of m labeled examples drawn from an unknown arbitrary distribution D and produces $h \in C$ that is consistent with labeled examples. Then L is an efficient PAC learning algorithm where $m \geq k_1((1/\epsilon)\log(1/\delta) + (d/\epsilon)\log(1/\epsilon))$.

- Sketch of proof: $P(h \text{ consistent, error}(h) > \epsilon) < \delta$. LHS depends on two terms: growth function which grows polynomially as m and a second term that decays exponentially as m (Hoeffding bound)

\[P(h \text{ consistent, error}(h) > \epsilon) < \left(\frac{2em}{d}\right)^d 2(2)^{-(\frac{\epsilon m^2}{2})} < \delta \]

then solve for m.
Random vectors are often concentrated around their means and a goal of concentration inequalities is to bound these probabilities.

- **Markov’s Inequality**: For any nonnegative random variable X, $P(X \geq \varepsilon) \leq E(X)/\varepsilon$.
- If X is a zero mean RV with $X \in [a,b]$ then for $s \geq 0$ $E(\exp(sX)) \leq \exp(s^2(b-a)^2/8)$
- **Hoeffding’s Inequality**: Let X_i be a sequence of iid RVs that are bounded $f(X_i) \in [a,b]$ and $S_m = \sum_{i=1}^{m} f(X_i)$, then $P(|S_m - E(S_m)| \geq \varepsilon) \leq \exp (-2\varepsilon^2/(m(b - a)^2))$
Vapnik proved an important result giving an upper bound on generalization error.

\[J(w) \leq J_{\text{emp}}(w) + J_{\text{model}}(w) \]

- VC dimension theory
- Margin and slack variable bounds
- Rademacher complexity
- Extensions to regression and novelty detection
- Linking statistical learning and Bayesian learning

Relationship between empirical error and generalization error
McDiarmid’s Inequality: Let X_i be a sequence of ind RVs that take values in a set A and assume that $f: A^m \rightarrow \mathbb{R}$ that satisfies

$$\sup_{x_i, \ldots x_m, z_i \in A} |f(x_1, \ldots, x_i, \ldots, x_m) - f(x_1, \ldots, z_i, \ldots, x_m)| \leq c_i$$

then for all $\varepsilon > 0$

$$P(|f(X_1, \ldots, X_m) - E(f(X_1, \ldots, X_m))| \geq \varepsilon) \leq \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^{m} (c_i)^2}\right)$$
Committee of Networks

- Train several networks and form a committee to avoid overtraining
- Approaches
 - Ensemble averaging
 - Bootstrapping and Bagging
 - Boosting
 - Filtering
 - Subsampling
Committee of Networks

INPUT

Network1

Network2

Network3

Combiner

OUTPUT
Learning Methodologies

- **Strong Learning**: PAC learning model (error rate and confidence parameter set arbitrarily close to 0)
- **Weak Learning**: Learn with error rate $\varepsilon < \frac{1}{2}$
- Are notions of strong learning and weak learning equivalent? (Yes)
Filtering: Training with 3 Experts

- First expert trained with N_1 examples
- Second expert trained with N_2 examples and use first expert to filter examples
 - Flip fair coin, if heads add misclassified example
 - Otherwise add correctly classified example
 - Continue until have N_1 examples
- Third expert trained with N_3 examples add example when first and second experts disagree, continue until additional N_1 examples drawn
Boosting by Filtering Comments

- Total number of examples needed: $N = N_1 + N_2 + N_3$
- Total computational cost: $3N_1$ examples
- Learn on tougher examples: lose error bound if error on first expert is $\varepsilon < \frac{1}{2}$ then overall error rate is $< 3 \varepsilon^2 - 2 \varepsilon^3$
- To get lower error rate filter more examples
Adaboost (resample)

- Boosting by filtering (takes too many examples)
- Adaboost use same training examples, but change distribution on which you sample
- Adaboost is simple to implement and used on many applications and different types of learning machines
Boosting Algorithm

- **Input:** \(S = \{(x(i), d(i)), 1 \leq i \leq m\} \)
- **Initialization:** Choose distribution \(D_1 \) that picks inputs equally likely and let \(0 < \gamma < \frac{1}{2} \) be the weak learning rate (i.e. algorithm produces an error rate less than \(\frac{1}{2} - \gamma \))
- **Iterate:** for \(n=1 \ .. \ T \)
 - Call weak learning algorithm \(L \) with examples chosen from distribution \(D_n \)
 - Get outputs from \(h_n : X \rightarrow Y \)
 - Calculate error \(\varepsilon_n = \frac{1}{2} - \gamma_n \leq \frac{1}{2} - \gamma \)
 - Update \(D_{n+1} \) based on training errors
- **Produce hypothesis** \(h \) from \(h_1, \ldots, h_T \)
Adaboost algorithm

- **Choosing D_n**
 \[D_{n+1}(x(i)) = D_n(x(i)) \exp \left(- \alpha_n h_n(x(i))d(i) \right) / Z_n \]
 where Z_n is a normalization constant.

- **Output hypothesis**
 \[h(x) = \text{sgn} \left(\sum_{n=1:T} \alpha_n h_n(x) \right) \]
Empirical error rate of Adaboost

Theorem: Adaboost produces an empirical error rate of
\[
\text{error}(h(S)) \leq \exp(-2\gamma^2 T)
\]

Comment: \(D_{T+1}(x(i)) = \exp(-f(x(i))d(i))/(m \prod_{n=1:T} Z_n) \) where
\[
f(x(i)) = \sum_{n=1:T} \alpha_n h_n(x(i))
\]

Lemma 1: \(\text{error}(h(S)) \leq \prod_{n=1:T} Z_n \)

Lemma 2: \(Z_n \leq 2(\varepsilon_n (1-\varepsilon_n))^{1/2} \)
Proof or Lemma 1

\[
\text{error}(h(S)) = \frac{1}{m} \sum_{i=1}^{m} 1(d(i) \neq h(x(i))) \\
= \frac{1}{m} \sum_{i=1}^{m} 1(d(i)f(x(i)) \leq 0) \\
\leq \frac{1}{m} \sum_{i=1}^{m} \exp(-d(i)f(x(i))) \\
= \frac{1}{m} \sum_{i=1}^{m} D_{T+1} \left(x(i) \right) m \prod_{n=1}^{T} Z_n \\
= \prod_{n=1}^{T} Z_n
\]

Inequality is by bounding indicator function by exponential function, next to last equality is from Comment, and last equality is by interchanging product and sum.
Proof of Lemma 2

\[Z_n = \sum_{i=1:m} D_n(x(i)) \exp(-\alpha_n d(i) h_n(x(i))) \]

\[= \sum_{i:d(i) \neq h_n(x(i))} D_n(x(i)) \exp(\alpha_n) \]

\[+ \sum_{i:d(i) = h_n(x(i))} D_n(x(i)) \exp(-\alpha_n) \]

\[= \varepsilon_n \exp(\alpha_n) + (1-\varepsilon_n) \exp(-\alpha_n) \]

Choose optimal value for weighting term \(\alpha_n \) to get that

\[\alpha_n = \frac{1}{2} \log ((1-\varepsilon_n)/\varepsilon_n) \]

which gives us desired inequality that

\[Z_n \leq 2(\varepsilon_n (1-\varepsilon_n))^{\frac{1}{2}} \]
Proof of Theorem

Combine Lemmas 1 and 2 to get that
\[
\text{error}(h(S)) \leq \prod_{n=1:T} 2 \left(\varepsilon_n \left(1 - \varepsilon_n\right) \right)^{1/2}
\]
\[
= \prod_{n=1:T} \left(1 - 4 \gamma_n^2\right)^{1/2}
\]
\[
\leq \prod_{n=1:T} \exp \left(-2 \gamma_n^2\right)
\]
\[
\leq \exp \left(-2\gamma^2 T\right)
\]

If we choose \(T = 1/(2 \gamma^2) \log(m) \), then training error rate is 0.

Lemma 2 also chooses the best weighting factor \(\alpha_n = \frac{1}{2} \log \left(\frac{(1- \varepsilon_n)}{\varepsilon_n}\right) \).
References