Chapter 2
Basic Linear Algebra

to accompany
Introduction to Mathematical Programming Operations Research,
Volume 1, 4th edition, by Wayne L. Winston and Munirpallam
Venkataramanan

Presentation by: H. Sarper

Chapter 2 - Learning Objectives

- Describe matrices and vectors with basic matrix operations.
- Describe matrices and their application to modeling systems of linear equations.
- Explain the application of the Gauss-Jordan method of solving systems of linear equations.
- Explain the concepts of linearly independent set of vectors, linearly dependent set of vectors, and rank of a matrix.
- Describe a method of computing the inverse of a matrix.
- Describe a method of computing the determinant of a matrix.
2.1 - Matrices and Vectors

Matrix – an rectangular array of numbers

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\quad \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\quad \begin{pmatrix}
1 \\
-2
\end{pmatrix}
\quad \begin{pmatrix}
2 \\
1
\end{pmatrix}
\]

Typical m x n matrix having m rows and n columns. We refer to m x n as the order of the matrix. The number in the i-th row and j-th column of A is called the ith element of A and is written \(a_{ij}\).

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\]

Two matrices \(A = [a_{ij}]\) and \(B = [b_{ij}]\) are equal if and only if A and B are the same order and for all i and j, \(a_{ij} = b_{ij}\).

If \[
A = \begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\quad \text{and} \quad B = \begin{pmatrix}
x & y \\
w & z
\end{pmatrix}
\]

\(A = B\) if and only if \(x = 1, y = 2, w = 3,\) and \(z = 4\)
2.1 - Matrices and Vectors

Vectors – any matrix with only one column is a **column vector**. The number of rows in a column vector is the **dimension** of the column vector. An example of a 2×1 matrix or a two-dimensional column vector is shown to the right.

$$
\begin{pmatrix}
1 \\
2
\end{pmatrix}
$$

\mathbb{R}^m will denote the set all m-dimensional column vectors.

Any matrix with only one row (a $1 \times n$ matrix) is a **row vector**. The dimension of a row vector is the number of columns.

$$
\begin{pmatrix}
1 & 2 & 3
\end{pmatrix}
$$

2.1 - Matrices and Vectors

Vectors appear in boldface type: for instance vector \mathbf{v}.

Any m-dimensional vector (either row or column) in which all the elements equal zero is called a **zero vector** (written $\mathbf{0}$).

Examples are shown to the right.

$$
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0
\end{pmatrix}
$$
2.1 - Matrices and Vectors

Any m-dimensional vector corresponds to a directed line segment in the m-dimensional plane. For example, the two-dimensional vector \(\mathbf{u} \) corresponds to the line segment joining the point \((0,0)\) to the point \((1,2)\)

The directed line segments (vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w} \)) are shown on the figure to the right.

\[
\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}
\]

The scalar product is the result of multiplying two vectors where one vector is a column vector and the other is a row vector. For the scalar product to be defined, the dimensions of both vectors must be the same.

The scalar product of \(\mathbf{u} \) and \(\mathbf{v} \) is written:

\[
\mathbf{u} \cdot \mathbf{v} = \left(u_1 \cdot v_1 \right) + \left(u_2 \cdot v_2 \right) + \ldots + \left(u_n \cdot v_n \right)
\]

Example:

\[
\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}
\]

\[
\mathbf{u} \cdot \mathbf{v} = (1 \cdot 2) + (2 \cdot 1) + (3 \cdot 2) = 10
\]
2.1 - Matrices and Vectors

Scalar multiple of a matrix: \(A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \) \(3 \cdot A = \begin{pmatrix} 3 & 6 \\ -3 & 0 \end{pmatrix} \)

Example addition of two matrices (of same order): \(C_{i,j} = A_{i,j} + B_{i,j} \)

\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \end{pmatrix} \\
B = \begin{pmatrix} -1 & -2 & -3 \\ 2 & 1 & -1 \end{pmatrix}
\]

\[
C = \begin{pmatrix} 1 & 1 & 2 & -2 & 1 & -1 \\ 0 & 2 & -1 & 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}
\]

2.1 - Matrices and Vectors

Addition of vectors (of same degree). Vectors may be added using the parallelogram law or by using matrix addition.

\[
v = (2, 1) \\
u = (1, 2) \\
u + v = (2 + 1, 1 + 2) = (3, 3)
\]
2.1 - Matrices and Vectors

Line Segments can be defined using scalar multiplication and the addition of matrices.

If \(u = (1,2) \) and \(v = (2,1) \), the line segment joining \(u \) and \(v \) (called \(uv \)) is the set of all points corresponding to the vectors
\[
cu + (1-c)v \quad \text{where} \quad 0 < c < 1
\]

See the example to the right.

2.1 - Matrices and Vectors

Transpose of a matrix

Given any \(m \times n \) matrix

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

\[
A^T = \begin{bmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{bmatrix}
\]

Example

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\]

\[
A^T = \begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{bmatrix}
\]

Observe: \((A^T)^T = A \)
2.1 - Matrices and Vectors

Matrix multiplication

Given to matrices A and B, the matrix product of A and B (written AB) is defined if and only if the number of columns in A = the number of rows in B.

The matrix product $C = AB$ of A and B is the $m \times n$ matrix C whose ijth element is determined as follows:

$C_{ij} =$ scalar product of row i of $A \times$ column j of B

Example

$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$

$C_{11} = (1 \ 1) \cdot (1) = 5$ $C_{12} = (1 \ 1) \cdot (3) = 8$

$C_{21} = (2 \ 1) \cdot (1) = 7$ $C_{22} = (2 \ 1) \cdot (2) = 11$

$C = \begin{pmatrix} 5 & 8 \\ 7 & 11 \end{pmatrix}$

Note: Matrix C will have the same number of rows as A and the same number of columns as B.

2.1 - Matrices and Vectors

Matrix Multiplication with Excel

Use the EXCEL MMULT function to multiply the matrices:

$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$

Step 1 – Enter matrix A into cells $B1:D2$ and matrix B into cells $B4:C6$.

Step 2 – Select the output range (B8:C9) into which the product will be computed.

Step 3 – In the upper left-hand corner (B8) of this selected output range type the formula:

$= \text{MMULT}(B1:D2,B4:C6)$.

Step 4 - Press CONTROL SHIFT ENTER (not just enter)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matrix A</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Matrix B</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$A \ B$</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
2.2 – Matrices and Systems of Linear Equations

Consider a system of linear equations shown to the right. The variables (unknowns) are referred to as \(x_1, x_2, \ldots, x_n\) while the \(a_{ij}\)'s and \(b_j\)'s are constants. A set of such equations is called a linear system of \(m\) equations in \(n\) variables.

A solution to a linear set of \(m\) equations in \(n\) unknowns is a set of values for the unknowns that satisfies each of the system's \(m\) equations.

Example

Given \(x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\) where \(x_1 = 1\) \(x_2 = 2\)

is a solution to the system

\[
\begin{align*}
 x_1 + 2x_2 &= 5 \\
 2x_1 - x_2 &= 0
\end{align*}
\]

since (using substitution)

\[
\begin{align*}
 1 + 2 \cdot (2) &= 5 \\
 2 \cdot (1) - 2 &= 0
\end{align*}
\]

Matrices can simplify and compactly represent a system of linear equations.

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}, \quad
x = \begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}, \quad
b = \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}
\]

A system of linear equations may be written \(Ax = b\) and is called its matrix representation. The matrix multiplication (using only row 1 of the \(A\) matrix for example) confirms this representation thus:

\[
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
\]
2.2 – Matrices and Systems of Linear Equations

Ax = b can sometimes be abbreviated A|b.
For example, given:

\[
A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ 0 \end{pmatrix}
\]

A|b is written:

\[
\begin{pmatrix} 1 & 2 & 5 \\ 2 & -1 & 0 \end{pmatrix}
\]

2.3 – The Gauss-Jordan Method

Using the Gauss-Jordan method, we can show that any system of linear equations must satisfy one of the following three cases:

Case 1 The system has no solution.
Case 2 The system has a unique solution.
Case 3 The system has an infinite number of solutions.

The Gauss-Jordan method is important because many of the manipulations used in this method are used when solving linear programming problems by the simplex algorithm (see Chapter 4).
2.3 – The Gauss-Jordan Method

Elementary row operations (ero).

An ero transforms a given matrix A into a new matrix A' via one of the following operations:

Type 1 ero – Matrix A' is obtained by multiplying any row of A by a nonzero scalar.

Type 2 ero – Multiply any row of A (say, row i) by a nonzero scalar c. For some $j \neq i$, let:

$$\text{row } j \text{ of } A' = c \times (\text{row } i \text{ of } A) + \text{row } j \text{ of } A.$$

Type 3 ero – Interchange any two rows of A.

Finding a solution using the Gauss-Jordan method.

The Gauss-Jordan method solves a linear equation system by utilizing ero’s in a systematic fashion. The steps to use the Gauss-Jordan method (with an accompanying example) are shown below:

Solve $Ax = b$ where:

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 9 \\ 6 \\ 5 \end{pmatrix}$$

Step 1 – Write the augmented matrix representation:

$$A|b = \begin{pmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{pmatrix}$$
2.3 – The Gauss-Jordan Method

The method uses ero’s to transform the left side of $A|b$ into an identify matrix. The solution will be shown on the right side. See x to the right.

$$A|b = \begin{bmatrix} 2 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix}$$

Step 2 – At any stage, define a current row, current column, and current entry (the entry in the current row and column). Begin with row 1 as the current row and column 1 as the current column, and $a_{11} (a_{11} = 2)$ as the current entry.

If the current entry (a_{11}) is nonzero, use ero’s to transform the current column (column 1) entries to:

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Steps to accomplish this were:

1. Multiply row 1 by $\frac{1}{2}$ (type 1 ero).

$$A_1|b_1 = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix}$$

2. Replace row 2 of $A_1|b_1$ by $-2^*(\text{row1} A_1|b_1) + \text{row 2 of } A_1|b_1$ (type 2 ero).

$$A_2|b_2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

3. Replace row 3 of $A_2|b_2$ by $-1^*(\text{row 1 of } A_2|b_2) + \text{row 3 of } A_2|b_2$ (type 2 ero).

$$A_3|b_3 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & -2 & 3 \end{bmatrix}$$
2.3 – The Gauss-Jordan Method

Then obtain the new current row, column, and entry by moving down one row and one column to the right and go to Step 3.

If \(a_{11} \) (current entry) would have equaled zero, then do a type 3 ero with the current row and any row that contains a nonzero entry in the current column. Use ero’s to transform column 1 as shown to the right.

If there are no nonzero numbers in the current column, obtain a new current column and entry by moving one column to the right.

Step 3 - If the new current entry is non zero, use ero’s to transform it to 1 and the rest of the column entries to 0. Repeat this step until finished.

Making \(a_{22} \) the current entry:

4. Multiply row 2 of \(A_3|b_3 \) by \(-1/3\) (type 1 ero)

5. Replace row 1 of \(A_4|b_4 \) by \(-1*(\operatorname{row} 2 \text{ of } A_4|b_4) + \operatorname{row} 1 \text{ of } A_4|b_4 \) (type 2 ero).

6. Place row 3 of \(A_5|b_5 \) by \(2*(\operatorname{row} 2 \text{ of } A_5|b_5) + \operatorname{row} 3 \text{ of } A_5|b_5 \) (type 2 ero).
2.3 – The Gauss-Jordan Method

Repeating Step 3 again for another new entry \((a_{33})\) and performing an additional three row operations yields the final augmented array:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{bmatrix}
\]

Special Cases: After application of the Gauss-Jordan method, linear systems having no solution or infinite number of solutions can be recognized.

No solution example: Infinite solutions example:

\[
\begin{bmatrix}
1 & 2 & 3 \\
0 & 0 & -2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

2.3 – The Gauss-Jordan Method

Basic variables and solutions to linear equation systems

For any linear system, a variable that appears with a coefficient of 1 in a single equation and a coefficient of 0 in all other equations is called a basic variable.

Any variable that is not a basic variable is called a nonbasic variable.

Let \(BV\) be the set of basic variables for \(A'x=b'\) and \(NBV\) be the set of nonbasic variables for \(A'x=b'\). The character of the solutions to \(A'x=b'\) (and \(Ax=b\)) depends upon which of the following cases occur.
2.3 – The Gauss-Jordan Method

Case 1: $A'x = b'$ has at least one row of the form $[0, 0, \ldots, 0 | c]$ (c ≠ 0). Then $A'x = b'$ (and $Ax = b$) has no solution. In the matrix to the right, row 5 meets this Case 1 criteria. Variables x_1, x_2, and x_3 are basic while x_4 is a nonbasic variable.

\[
A' | b' = \begin{pmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}
\]

Case 2: Suppose Case 1 does not apply and NBV, the set of nonbasic variables is empty. Then $A'x = b'$ will have a unique solution. The matrix to the right has a unique solution. The set of basic variables is x_1, x_2, and x_3 while the NBV set is empty.

\[
A' | b' = \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{pmatrix}
\]
2.3 – The Gauss-Jordan Method

Case 3: Suppose Case 1 does not apply and NBV is not empty. Then $A'x=b'$ (and $Ax=b$) will have an infinite number of solutions. BV = \{x_1, x_2, and x_3\} while NBV = \{x_4 and x_5\}.

$$A' | b' = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A summary of Gauss-Jordan method is shown to the right. The end result of the Gauss-Jordan method will be one either Case 1, Case 2, or Case 3.

- Does $A' | b'$ have a row $[0, 0, ..., 0 | c]$ ($c \neq 0$)？
 - Yes
 - No
- $Ax = b$ has no solution.
- Find BV and NBV.
- Is NBV empty?
 - Yes
 - No
- $Ax = b$ has a unique solution.
- $Ax = b$ has an infinite number of solutions.
2.4 – Linear Independence and Linear Dependence

Let \(V = \{ v_1, v_2, \ldots, v_k \} \) be a set of row vectors all having the same dimension.

A linear combination of the vectors in \(V \) is any vector of the form \(c_1v_1 + c_2v_2 + \ldots + c_k \) where \(c_1, c_2, \ldots, c_k \) are arbitrary scalars.

Example:

If \(V = \{ [1, 2], [2, 1] \} \)

\[
2v_1 - v_2 = 2([1 2]) - [2 1] = [0 3]
\]

and

\[
v_1 + 3v_2 = [1 2] + 3([2 1]) = [6 3]
\]

A set of vectors is called linearly independent if the only linear combination of vectors in \(V \) that equals 0 is the trivial linear combination \((c_1 = c_2 = \ldots = c_k = 0) \).

A set of vectors is called linearly dependent if there is a nontrivial linear combination of vectors in \(V \) that adds up to 0.

Example

Show that \(V = \{ [1, 2], [2, 4] \} \) is a linearly dependent set of vectors.

Since \(2([1, 2]) - 1([2, 4]) = (0, 0) \), there is a nontrivial linear combination with \(c_1 = 2 \) and \(c_2 = -1 \) that yields 0. Thus \(V \) is a linear independent set of vectors.
What does it mean for a set of vectors to linearly dependent? A set of vectors is linearly dependent only if some vector in \(V \) can be written as a nontrivial linear combination of other vectors in \(V \). If a set of vectors in \(V \) are linearly dependent, the vectors in \(V \) are, in some way, NOT all “different” vectors. By "different" we mean that the direction specified by any vector in \(V \) cannot be expressed by adding together multiples of other vectors in \(V \). For example, in two dimensions, two linearly dependent vectors lie on the same line.

The Rank of a Matrix: Let \(A \) be any \(m \times n \) matrix, and denote the rows of \(A \) by \(r_1, r_2, \ldots, r_m \). Define \(R = \{r_1, r_2, \ldots, r_m\} \).

The rank of \(A \) is the number of vectors in the largest linearly independent subset of \(R \).

To find the rank of matrix \(A \), apply the Gauss-Jordan method to matrix \(A \). Let \(A' \) be the final result. It can be shown that the rank of \(A' \) = rank of \(A \). The rank of \(A' \) = the number of nonzero rows in \(A' \). Therefore, the rank \(A = \) rank \(A' = \) number of nonzero rows in \(A' \).
2.4 – Linear Independence and Linear Dependence

A method of determining whether a set of vectors \(V = \{ v_1, v_2, \ldots, v_m \} \) is linearly dependent is to form a matrix \(A \) whose \(i \)th row is \(v_i \). If the rank of \(A = m \), then \(V \) is a linearly independent set of vectors. If the rank \(A < m \), then \(V \) is a linearly dependent set of vectors. See the example to the right.

Given \(V = \{ [1 \ 0 \ 0], [0 \ 1 \ 0], [1 \ 1 \ 0] \} \)

Form matrix \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \)

After the Gauss-Jordan method:

\[
A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

Since the rank of \(A' = 2 \) which is \(< 3\), the set of vectors in \(V \) are linearly dependent.

2.5 – The Inverse of a Matrix

A square matrix is any matrix that has an equal number of rows and columns.

The diagonal elements of a square matrix are those elements \(a_{ij} \) such that \(i = j \).

A square matrix for which all diagonal elements are equal to 1 and all non-diagonal elements are equal to 0 is called an identity matrix. An identity matrix is written as \(I_m \). An example is shown to the right.

\[
I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]
2.5 – The Inverse of a Matrix

For any given $m \times m$ matrix A, the $m \times m$ matrix B is the inverse of A if:

$$BA = AB = I_m$$

Some square matrices do not have inverses. If there does exist an $m \times m$ matrix B that satisfies $BA = AB = I_m$, then we write:

$$B = A^{-1}$$

Example

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad B = A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -5 & 1 & 7 \\ 1 & 0 & 2 \end{pmatrix}$$

$$AB = AA^{-1} = I_3$$

To see why we are interested in the inverse of a matrix, suppose we want to solve a linear system $Ax = b$ that has m equations in m unknowns. Suppose that A^{-1} exists. The results of multiplying both sides of the equation by A^{-1} is shown to the right:

$$\left(A^{-1}A\right)x = A^{-1}b$$

$$I_m \cdot x = A^{-1}b$$

This shows that knowing A^{-1} enables us to find the unique solution to a square linear system of equations.

The Gauss-Jordan method may be used to find A^{-1} (or show that A^{-1} does not exist).
Using the Gauss-Jordan Method to find A^{-1}.

Given matrix A, create the augmented matrix $A | I_2$.

Create the augmented matrix $A | I_2$.

Transform A into I_2 using ero's.

Step 1 - multiply row 1 by $\frac{1}{2}$ yielding:

Step 2 - replace row 2 by $(-1)(\text{row1}) + \text{row 2}$ yielding:

Step 3 - multiply row 2 by 2 yielding:

Step 4 - replace row 1 by $(-5/2)(\text{row1}) + \text{row 1}$ yielding:

I_2 has been transformed into A^{-1}.

2.5 – The Inverse of a Matrix
Some matrices do not have inverses.

Consider matrix A (shown to the right). Applying the Gauss-Jordan method yields A'.

Matrix A does not have a solution since the bottom row of A' has zeros. This can only happen if rank $A < 2$. If $m \times m$ matrix A has rank $< m$, then A^{-1} will not exist.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

$$A' = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

Use matrix inverses to solve linear systems.

Using appropriate matrix representation to solve the system to the right.

$$A \cdot x = b \quad \text{or} \quad \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$

where: $A' = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$

$$x = A^{-1} \cdot b = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Thus, $x_1 = 1$, $x_2 = 1$ is the unique solution to the system.
2.5 – The Inverse of a Matrix

Inverting Matrices with Excel

Use the EXCEL MINVERSE function to invert the matrix:

\[
A = \begin{pmatrix}
2 & 0 & -1 \\
3 & 1 & 2 \\
-1 & 0 & 1
\end{pmatrix}
\]

Enter the matrix into cells B1:D3 and select the output range (B5:D7 was chosen) where you want \(A^{-1} \) computed.

In the upper left-hand corner of the output range (cell B5), enter the formula:

\[
= \text{MINVERSE}(B1:D3)
\]

Press CONTROL SHIFT ENTER and out \(A^{-1} \) is computed in the output range.

2.6 – Determinants

Associated with any square matrix \(A \) is a number called the determinant of \(A \) (often abbreviated as \(\text{det} \ A \) or \(|A| \)).

For a 1 x 1 matrix:

\[
\text{det} \ A = a_{11}
\]

For a 2 x 2 matrix:

\[
A = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\]

\[
\text{det} \ A = a_{11}a_{22} - a_{21}a_{12}
\]

Example:

\[
\text{det} \left(\begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix} \right) = 2(5) - 3(4) = -2
\]
2.6 – Determinants

If A is an $m \times m$ matrix, then for any values of i and j, the ijth minor of A (written A_{ij}) is the $(m - 1) \times (m - 1)$ submatrix of A obtained by deleting row i and column j of A.

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]

If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ then $A_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}$ and $A_{32} = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$.

Let A be any $m \times m$ matrix. We may write A as:

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mm}
\end{bmatrix}
\]

To compute $\det A$, pick any value of i ($i = 1, 2, \ldots, m$):

\[
\det A = (-1)^{i+1}a_{i1}(\det A_{i1}) + (-1)^{i+2}a_{i2}(\det A_{i2}) + \cdots + (-1)^{i+m}a_{im}(\det A_{im})
\]

The above formula is called the expansion of $\det A$ by the cofactors of row i.

Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc.
2.6 – Determinants

Find det A given matrix A:

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\]

det A is expanded by using row 1 cofactors (row 2 or row 3 could be used with similar results). Notice that using row 1: \(a_{11} = 1, a_{12} = 2\) and \(a_{13} = 3\) and the minors of matrix A.

\[
A_{11} = \begin{pmatrix}
5 & 6 \\
7 & 9
\end{pmatrix} \quad A_{12} = \begin{pmatrix}
4 & 6 \\
7 & 9
\end{pmatrix} \quad A_{13} = \begin{pmatrix}
4 & 5 \\
7 & 8
\end{pmatrix}
\]

Thus:

\[
det A_{11} = 5(9) - 8(6) = -3 \quad det A_{12} = 4(9) - 7(6) = -6 \quad det A_{13} = 4(8) - 7(5) = -3
\]

\[
det A = (-1)^{i+1}a_{i1}(det A_{i1}) + (-1)^{i+2}a_{i2}(det A_{i2}) + (-1)^{i+3}a_{i3}(det A_{i3})
\]

\[
= (1)(1)(-3) + (-1)(2)(-6) + (1)(3)(-3) = -3 + 12 - 9 = 0
\]

Note: det A = 0 makes "sense" since the set of row vectors forming matrix A are clearly linearly dependent.